
LOL (Layers On Layers) -
Bypassing endpoint security

Rafal Wojtczuk, rafal@bromium.com

Rahul Kashyap, rahul@bromium.com

Bromium Confidential

• Describing the Layers - Architecture
• AV, HIPS, EMET, Sandboxes, Rootkit Detectors, SMEP

• Exploitation discussion
• LOL

Agenda

Kernelmode vs usermode

• Most Endpoint Security
solutions focus on user
mode protection

• Kernel mode is a huge
attack surface with
limited coverage

• Even the kernel mode
focused protections are
ill-equipped to defend

Kernel Vulnerabilities

• 200+ Kernel CVE’s from
Microsoft since 2010

• Stuxnet, Duqu, Gapz,
Gameover, CVE-2013-
5065 (NDProxy.sys),
TDL4 – (to name a few)
uncovered in the wild

Kernel (in)-security trends

0
10

20

30

40

50

60

70
80

90

2013 2012 2011 2010

Bromium Confidential

• Signature detection
• Heuristic detection
• File based access controls
• Reputation based controls

Layer 1: Anti-Virus

Bromium Confidential

Layer 2: Host IPS

• Usermode exploitation prevention
(out of scope)

• Extra logging of user’s actions
• System integrity checks (similar to

Patchguard)
• Limit abilities of user processes, by

custom kernel code, not relying on
security boundaries enforced by the
OS
• forbid stopping HIPS usermode services
• forbid loading non-whitelisted kernel

drivers
• forbid injecting code into "protected"

processes, e.g. lsass.exe
• ‘Vulnerability’ signatures are more

effective than ‘exploit’ signatures.

Bromium Confidential

• Some Host IPS block attacks leveraging signatures at the
TCP/IP layer
• These are essentially signatures/heuristics by DPI at the protocol

layer
• Advantages: it’s less intrusive (limited endpoint hooking), better

performance.
• Disadvantages: that these can be evaded with protocol/pattern based

evasions

Layer2: Host IPS (contd)

Layer 3: EMET

• Probably one of the best
anti-exploitation
mitigation tool (and…it’s
free!)

• Heavily focused on user
mode, no protection
against kernel mode
exploitation

Source: Microsoft.com

Layer 4: App Sandboxes

• Two types: App specific
(Chrome, Adobe Acrobat) and
kernel driver initiated
(Sandboxie, Bufferzone, etc)

• All types are vulnerable to kernel
mode exploitation

• Chrome has specific hardening
to the sandbox, but still exposed
to win32k.sys vulns

Ref:
http://labs.bromium.com/2013/07/23/applic
ation-sandboxes-a-pen-testers-
perspective/

Bromium Confidential

• Primarily designed to prevent kernel mode rootkits on x64 bit Windows
OS.

• Patchguard is code running in ring0 (just like any other kernel driver)
• It tries to protect the following:

• NTOS, HAL etc. (key system modules)
• SSDT, GDT, IDT
• Certain MSRs (which we discuss later)

• Historically it has been bypassed several times (and fixed..and
bypassed)

• Several instances where Patchguard has been disabled recently
• Recommended Read:
http://www.mcafee.com/us/resources/reports/rp-defeating-patchguard.pdf

Hidden (bonus?) Layer: Patchguard

Kernel mode Rootkits

• Kernel mode rootkits
• Can intercept native API in

kernel mode.
• Manipulate kernel data

structures.
• Remain ‘hidden’

Source: Microsoft

Layer 5: Kernel Rootkit Detector

• Preventing and logging write attempts to the
system’s interrupt descriptor table (IDT) and the
system service dispatch table (SSDT)

• Stopping changes to the processor system
transitioning table

• Preventing modifications to the direct kernel object
manipulation (DKOM) list and threads

• Eliminating malicious attachments to kernel mode
drivers

• Prohibiting malicious inline hooking to kernel code
sections along with key device drivers

• Stopping malicious modifications to drivers’ import
address table (IAT) hooking

• Preventing malicious modifications to kernel export
address table (EAT)

• Stopping malicious I/O calls from device drivers
• Detecting malicious changes to drivers’ dispatch

routines

Bromium Confidential

• Achieve code execution in usermode app (e.g. browser)
• Run kernel exploit code
• Run useful kernelmode payload

Kernel mode exploits – Quick Review

Bromium Confidential

• Grant the SYSTEM token to the current process and then return to
usermode

• Almost all the public exploits use this technique

Typical kernel mode payload

Layer 6: SMEP
(Supervisor Mode Execution Protection)

• Forbid running code from
usermode page in kernel mode,
by setting relevant SMEP bit in
CR4 CPU register

• Assumption is: no way for a
user to create arbitrary
executable code in kernel
pages (broken on 32bit
Windows btw)

• Generic bypass - kernelmode
ROP, possibly via SMEP-
disable (that clears SMEP bit) Source: Intel

Bromium Confidential

• Traditional Kernel mode payloads use shellcode in user space
memory

• Leverage the classic ret-2-libc conceptually (to bypass SMEP)
and create gadgets to stay in ring0

• The first gadget should clear SMEP

• Several ways to do this..

• Read the blog by j00ru on this http://j00ru.vexillium.org/?p=783

Kernel mode ROP

There are many other options...

• Once attacker has gained code
execution in the kernel context, all
security measures implemented in
kernelmode are bypassable

• Attacker might need to thoroughly
reverse engineer a given product in
order to disable it entirely in a stable
manner; but there are a few generic
methods to cripple/ignore the protection
• Clear kernel callback tables – make the watcher

blind
• Migration/code injection to arbitrary usermode

processes
• Not guaranteed to work against every security

solution, but expected to work against many

Exploitation

CVE-2013-3660
(a.k.a EPATHOBJ)

Bromium Confidential

Stages of an attack – AV

• Achieve code execution in usermode app (e.g. browser)
• Run kernel exploit code
• Run useful kernelmode payload

Layer 1: AV

• “AV” == scan for signatures, in
usermode
• So, not much relevant to the topic

of kernel vulnerabilities
• It just does not work for 0days
• Straightforward to remove

offending patterns from the
code; e.g. do not store
cleartext metasploit shellcode
in the binary, encode it

Bromium Confidential

AV

Bromium Confidential

Layer 2: EMET

• Achieve code execution in usermode app (e.g. browser)
• Run kernel exploit code
• Run useful kernelmode payload

EMET

• EMET is basically a set of
heuristics meant to catch
common usermode shellcode
behavior
• Thou shalt not VirtualProtect +x

the stack
• So, not much relevant to the topic

of kernel vulnerabilities
• User mode bypass – see:

“Bypassing EMET 4.1”
http://labs.bromium.com/2014/02/24/bypassin
g-emet-4-1/

Bromium Confidential

• Achieve code execution in usermode app (e.g. browser)
• Run kernel exploit code
• Run useful kernelmode payload

Layer 3: SMEP

Bromium Confidential

CVE-2013-3660 (EPATHOBJ) and SMEP

• Vulnerability primitive - overwrite arbitrary memory location
(in the kernel) with an address of a kernel buffer

• Tavis’s PoC overwrites a kernel code pointer (in
nt!HalDispatchTable) with an address of a trampoline in
kernel memory that jumps into usermode payload - SMEP
catches it

Bromium Confidential

SMEP bugcheck on Windows 8

CVE-2013-3660 and SMEP

• Exploit the vulnerability to
overwrite
nt!MmUserProbeAddress
• Results in ability to overwrite

writable kernel locations via e.g.
ReadFile(pipeHandle,
kernel_address)

• set U/S bit in the page table
entry for an usermode
address X

• overwrite nt!HalDispatchTable
with X

Bromium Confidential

SMEP-bypassing exploit on Windows 8

Layer 4: Sandboxie4 and Chrome sandbox

• In both cases, isolation is
implemented using usual OS
security mechanisms – so
normal token stealing kernel
payload is all attacker needs
from kernelmode

• Admittedly, Chrome sandbox
limits the number of usable
exploits (but win32k.sys ones
are exploitable)

Sandboxie3

• Achieve code execution
in usermode app (e.g.
browser)

• Run kernel exploit code
• Run useful kernelmode

payload

Bromium Confidential

Layer 5: Host IPS

HIPS/Sandboxie3
Usermode code injection from kernel

• ... directly beats the process
restrictions

• Generally, if there is a
resource X available only for a
process Y, then we can grab
X by injecting code into Y

• Quite a few methods
• KeInsertQueueApc() - uses many

kernel API, if any is
hooked/monitored by
HIPS/sandbox, we lose

• syscall/sysenter MSR overwrite -
no kernel API used

Bromium Confidential

How syscalls are dispatched

Layer 6: Deepsafe + MSR overwrite

Fig: Exploit triggers MSR alert

Bromium Confidential

• Deepsafe has also the ability to detect the attempt to clear
CR4.SMEP – so an exploit should not attempt to bypass
SMEP via CR4.SMEP-clearing trampoline

• However, Deepsafe (at least currently) does not detect the
mere escalation to kernelmode – the kernelmode payload
just needs to be careful to not behave in a way that is
covered by Deepsafe detection methods

Deepsafe continued

Bromium Confidential

Backing phys frame overwrite

Bromium Confidential

• How to overwrite the backing frame?
• Just set R/W bit in any PTE for the frame
• Again, PTE is mapped at the known location

• Ability to inject hook in all processes, no kernel API used
• What to overwrite ?

• SharedUserData, actual syscall invocation in ntdll

• Where to place the hook code?
• Unused end of page in any library

Backing phys frame overwrite cntd

Bromium Confidential

Find Waldo, picture 1

Bromium Confidential

Find Waldo, picture 2

WTF??LOL

Bromium Confidential

• Kernel cannot protect against itself
• A reliable kernel exploit can lead to a ‘Swiss army knife’

malware
• Despite various layers, most current solutions have

architectural deficiencies to defend against such attacks
• A robust abstraction layer like VMM raises the bar

significantly to defend against such attacks

Conclusion

Bromium Confidential

• [1] Michael Vincent and Abhishek Singh, „How Advanced Malware Bypasses Process Monitoring”,
http://www.fireeye.com/blog/technical/malware-research/2012/06/bypassing-process-monitoring.html

• [2] Jared Demott, „Bypassing EMET 4.1”, http://bromiumlabs.files.wordpress.com/2014/02/bypassing-emet-4-
1.pdf

• [3] Mateusz ‘j00ru’ Jurczyk & Gynvael Coldwind, „SMEP: What is it, and how to beat it on Windows”,
http://j00ru.vexillium.org/?p=783

• [4] bugcheck & skape, „Kernel-mode Payloads on Windows”, http://uninformed.org/index.cgi?v=3&a=4
• [5] https://labs.mwrinfosecurity.com/blog/2013/03/06/pwn2own-at-cansecwest-2013/
• [6] https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
• [7] http://nakedsecurity.sophos.com/2014/02/27/notorious-gameover-malware-gets-itself-a-kernel-mode-

rootkit/
• [8] http://www.welivesecurity.com/2012/12/27/win32gapz-steps-of-evolution/
• [9] http://www.fireeye.com/blog/technical/cyber-exploits/2013/12/cve-2013-33465065-technical-analysis.html
• [10] http://labs.bromium.com/2013/10/22/the-latest-tdl4-and-cve-2013-3660-exploit-enhancements
• [11] http://www.mcafee.com/us/resources/reports/rp-defeating-patchguard.pdf

References

Q&A
Thanks!

http://labs.bromium.com/
@rckashyap

