LOL (Layers On Layers) - @ e
Bypassing endpoint securlty

Rafal Wojtczuk, rafal@bromium.com

Rahul Kashyap, rahul@bromium.com

Agenda @ LABS

Describing the Layers - Architecture
AV, HIPS, EMET, Sandboxes, Rootkit Detectors, SMEP

Exploitation discussion
LOL

N,

Windows

Kernelmode vs usermode

Most Endpoint Security
solutions focus on user _
mode protection - wil ——

| NTDLLDLL |

Kernel mode is a huge
attack surface with

limited coverage 1

Even the kernel mode — I .

uonesnbyuo)
)
20

(Ansibas) 16y

focused protections are

ill-equipped to defend :

Kernel Vulnerabilities

200+ Kernel CVE’s from
Microsoft since 2010

Stuxnet, Duqu, Gapz,
Gameover, CVE-2013-
5065 (NDProxy.sys),
TDL4 — (to name a few)
uncovered in the wild

90 +
80 -

|
50 A
L
20 -
10 -

70
60

40
30

2013

2012 2011

Kernel (in)-security trends

2010

- Heuristic detection
- File based access controls

Layer 1: Anti-Virus @ LABS

- Signature detection

Anti-Virus

- Reputation based controls

Layer 2: Host IPS

Usermode exploitation prevention
(out of scope)

Extra logging of user’s actions

System integrity checks (similar to
Patchguard)

Limit abilities of user processes, by
custom kernel code, not relying on
security boundaries enforced by the
oS

forbid stopping HIPS usermode services

forbid loading non-whitelisted kernel
drivers

forbid injecting code into "protected"

processes, e.g. Isass.exe
‘Vulnerability’ signatures are more
effective than ‘exploit’ signatures.

@ LABS

HIPS Kernel Driver ,

User

Process

HIPS

Function
allowed
Yes

Kernel Drivers

Kernel

Layer2: Host IPS (contd)

Some Host IPS block attacks leveraging signatures at the
TCP/IP layer

These are essentially signatures/heuristics by DPI at the protocol
layer

Advantages: it’s less intrusive (limited endpoint hooking), better
performance.

Disadvantages: that these can be evaded with protocol/pattern based
evasions

lLABS

Layer 3: EMET

Included

EMET Security Mitigations

P rO b a b Iy O n e Of th e b eSt Data Execution Prevention (DEP) Security Mitigation
a n ti - eX p I O i t a ti O n Structured Execution Handling Overwrite Protection (SEHOP) Security Mitigation

NullPage Security Mitigation

m iti g ati O n tOOI (a n d A it’S Heapspray Allocation Security Mitigation

f ' Export Address Table Filtering (EAF) Security Mitigation
re e -) Mandatory Address Space Layout Randomization (ASLR) Security Mitigation

Bottom Up ASLR Security Mitigation

H e aVi I y fo C u S e d O n u S e r Load Library Check - Return Oriented Programming (ROP) Security Mitigation*
m O d e : n O p rote Cti O n Memory Protection Check — Return Oriented Programming (ROP) Security Mitigation*

Caller Checks — Return Oriented Programming (ROP) Security Mitigation*

[]
a g a I n St ke rn e I l I l Od e Simulate Execution Flow — Return Oriented Programming (ROP) Security Mitigation®
Stack Pivot — Return Oriented Programming (ROP) Security Mitigation*

L] L]
eX p I O I ta tl O n * Available and appliccble only to 32-bit processes

** EMET supports Wincows 7, Windows 8, Windows 8.1, Windows Server 2003 Service Pack 1, Windows Server 2008, Windows
Server 2008 R2, Windcws Server 2012, Windows Server 2012 R2, Windows Vista Service Pack 1, and Wirdows XP Service Pack
3.

NANN NN NANENENN

Source: Microsoft.com

Layer 4: App Sandboxes ‘Br

Two types: App specific
(Chrome, Adobe Acrobat) and
kernel driver initiated
(Sandboxie, Bufferzone, etc)

All types are vulnerable to kernel
mode exploitation

Chrome has specific hardening
to the sandbox, but still exposed
to win32k.sys vulns

Ref:

http://labs.bromium.com/2013/07/23/applic
ation-sandboxes-a-pen-testers-
perspective/

User

Process

»x User Mode Hooks

Sandb:

Sandbox Kernel Driver

Function
allowed
Yes

Kernel Drivers

n32k_NtGdiDeleteColorSpace
n3zk_NtGdiEnumObjects
n32

Wi
Wi
Wingzk_NtGdiFullscreenControl

Hidden (bonus?) Layer: Patchguard @ LABS

Primarily designed to prevent kernel mode rootkits on x64 bit Windows
OS.

Patchguard is code running in ring0 (just like any other kernel driver)
It tries to protect the following:
NTOS, HAL etc. (key system modules)

SSDT, GDT, IDT
Certain MSRs (which we discuss later)

Historically it has been bypassed several times (and fixed..and
bypassed)

Several instances where Patchguard has been disabled recently
Recommended Read:
http.//www.mcafee.com/us/resources/reports/rp-defeating-patchguard.pdf

Kernel mode Rootkits @ LABS

Kernel mode rootkits

Can intercept native APl in
kernel mode.

Manipulate kernel data
structures.

Remain ‘hidden’

1. Data request
initiated

4, Application or user
receives incorrect data

3. Rootkit intercepts and
modifies retrieved data

[0
Firmware 00000000
_—"| Correct data

Fiqure 1. Possible effect of a kernel mode rootkit compromise

Application

User mode

Kernel

2. Data retrieved

Source: Microsoft

Layer 5: Kernel Rootkit Detector @ LABS

Preventing and logging write attempts to the
system’s interrupt descriptor table (IDT) and the
system service dispatch table (SSDT)

Stopping changes to the processor system
transitioning table

Preventing modifications to the direct kernel object
manipulation (DKOM) list and threads

Eliminating malicious attachments to kernel mode
drivers

Prohibiting malicious inline hooking to kernel code
sections along with key device drivers

Stopping malicious modifications to drivers’ import
address table (IAT) hooking

Preventing malicious modifications to kernel export
address table (EAT)

Stopping malicious I/O calls from device drivers

Detecting malicious changes to drivers’ dispatch
routines

Application
c <
Operating System
. vy
& I
Rootkit Detector
A S

Kernel mode exploits — Quick Review [:]J1.a8s

Achieve code execution in usermode app (e.g. browser)
Run kernel exploit code
Run useful kernelmode payload

Typical kernel mode payload

Grant the SYSTEM token to the current process and then return to

usermode
Almost al

C:\Windows\system32\cmd.exe
Microsoft Windows [Uersion 6.1.76011

Copyright {(c)> 2809 Microsoft Corporation. All rights reserved.

C:\Users\user32>cd esak

C:\Users\userid2i\esak>tasklist | find “cmd"
cnd . exe 5984 RDP-Tcpia

C:\Users\user32\esak>vhoami
user3d2—-pc\user32

C:\Users\user32\esak>epathcl.exe ——elevate ——targetpid=5984 nop

C:\Users\user3d2\esak>wvhoami
nt authority\system

C:\Users\user3d2\esak>_

=0 ||-§3-|

Layer 6: SMEP @ LABS
(Supervisor Mode Execution Protection)

Forbid running code from ey
usermode page in kernel mode, W Sl 2" oerform any
by setting relevant SMEP bit in

CR4 CPU register e v e ks
Assumption is: no way for a How does SMEP work?
user to create arbitrary —

OxF..FFF

executable code in kernel
pages (broken on 32bit
Windows btw)

Generic bypass - kernelmode -
ROP, pOSSIny Vla SMEP_ Figure 3. Pictorial description of Intel” OS Guard operation
disable (that clears SMEP bit) Source: Intel

NULL pointer
vulnerztility

=
2
-
2
c
2
-
-
o
@
x
v

=
[}
$e3
Seps
- Y
H
352
a9
w¥Yaoa
Zxa
"]

0x0..00u

Kernel mode ROP (1) Laes

Traditional Kernel mode payloads use shellcode in user space
memory

Leverage the classic ret-2-libc conceptually (to bypass SMEP)
and create gadgets to stay in ring0

The first gadget should clear SMEP 2. | bew e 36"

3. | mov crd, eax
4. | jmp ©xObaaaaad

Several ways to do this..

Read the blog by jOOru on this http://[00ru.vexillium.org/?p=783

There are many other options...

Once attacker has gained code
execution in the kernel context, all
security measures implemented in
kernelmode are bypassable

Attacker might need to thoroughly
reverse engineer a given product in
order to disable it entirely in a stable
manner; but there are a few generic
methods to cripple/ignore the protection

gll_egr kernel callback tables — make the watcher
in

Migration/code injection to arbitrary usermode
processes

Not guaranteed to work against every security
solution, but expected to work against many

Exploitation

CVE-2013-3660
(a.k.a EPATHOB]J)

Stages of an attack — AV @ LABS

Achieve code execution in usermode app (e.g. browser)
Run kernel exploit code
Run useful kernelmode payload

Layer 1: AV @ LABS

“AV” == scan for signatures, in
usermode
So, not much relevant to the topic
of kernel vulnerabilities
It just does not work for Odays

Straightforward to remove
offending patterns from the
code; e.g. do not store
cleartext metasploit shellcode
In the binary, encode it

AV

#J Antivirus scan for ae. x
€ - C B https//www.irustotal.com/en/file/7133d10ef39a877642fd9ddda757643e181737e9ed5649bafcd61dcal02cc: vy =

£ Community Statistics Documentation FAQ About

M virustotal

SHA256:

File name:

7133d10ef39a877642fd9ddda757643e181737e9ed5649bafcd61dca002¢cc3cd

epathcl.exe

Detection ratio: 0 /50

Analysis date: 2014-04-15 12:17:25 UTC (1 minute ago)

B2 Analysis

Antivirus
AVG

Ad-Aware
AegisLab

Agnitum

™ English

@ File detail © Additional information ® Comments 2 Votes EF Behavioural information

Result

e 0 o

Update

20140415
20140415
20140415

20140415

Join our community Sign in

-

@0 @0

ILABS

Layer 2: EMET @ LABS

Achieve code execution in usermode app (e.g. browser)
Run kernel exploit code
Run useful kernelmode payload

EMET @ LABS

EMET is basically a set of
heuristics meant to catch
common usermode shellcode
behavior

Thou shalt not VirtualProtect +x
the stack

So, not much relevant to the topic
of kernel vulnerabilities
User mode bypass — see:
“Bypassing EMET 4.17
http://labs.bromium.com/2014/02/24/bypassin
g-emet-4-1/

Layer 3: SMEP @ LABS

Achieve code execution in usermode app (e.g. browser)
Run kernel exploit code
Run useful kernelmode payload

CVE-2013-3660 (EPATHOBJ) and SMEP

Vulnerability primitive - overwrite arbitrary memory location
(in the kernel) with an address of a kernel buffer

Tavis's PoC overwrites a kernel code pointer (in
nt!'HalDispatchTable) with an address of a trampoline in

kernel memory that jumps into usermode payload - SMEP
catches it

SMEP bugcheck on Windows 8 @ LABS

Your PC ran into a problem and needs to restart. We're just

collecting some error info, and then we'll restart for you. (50%
complete)

If you'd like to know more, you can search online later for this error: ATTEMPTED EXECUTE OF NOEXECUTE MEMORY

CVE-2013-3660 and SMEP Br IS

Exploit the vulnerability to
overwrite
nt!MmUserProbeAddress

Results in ability to overwrite
writable kernel locations via e.g.
ReadFile(pipeHandle,
kernel _address)
set U/S bit in the page table
entry for an usermode

address X

overwrite nt'HalDispatchTable
with X

SMEP-bypassing exploit on Windows 8

(o] Command Prompt

Microsoft Windows [Uersion 6.2.92081
{c> 2012 Microsoft Corporation. All rights reserved.

C:\Users\x>start cmd
C:\Users\x>cd smep

C:\Users \x\smep>tasklist | find “cmd"
cmd.exe 2312 RDP-TcpiB

C:\Users \x\smep>vhoani
win8\user

C:\Users\x\smeprepathcl.exe ——smep ——elevate ——targetpid=2312 nop

C:\Users \x\smep>vhoani
nt authority\system

C:NUsers\x\smep>_

Windows 8 Pro
Build 9200

Layer 4: Sandboxie4 and Chrome sandbox@ LABS

- In both cases, isolation is
implemented using usual OS
security mechanisms — so
normal token stealing kernel
payload is all attacker needs
from kernelmode

- Admittedly, Chrome sandbox
limits the number of usable
exploits (but win32k.sys ones
are exploitable)

Sandboxie3

Achieve code execution
iIn usermode app (e.g.
browser)

Run kernel exploit code

Run useful kernelmode
payload

@ lLABS

User
‘Process Process
Sandbc

Sandbox Kernel Driver

Function

Layer 5: Host IPS

@ lLABS

HIPS/Sandboxie3 @ AR
Usermode code injection from kernel

... directly beats the process -
restrictions

Generally, if there is a
resource X available only for a
process Y, then we can grab
X by injecting code into Y
Quite a few methods

KelnsertQueueApc() - uses many
kernel API, if any is
hooked/monitored by
HIPS/sandbox, we lose

syscall/sysenter MSR overwrite -
no kernel APl used

How syscalls are dispatched @ LABS

LSTAR/

syscall invocation ~—_ SYSMESNI_I ER P syscall handler

\/

Layer 6: Deepsafe + MSR overwrite @ LABS

McAfee Deep Defender Protection Status EI
4 Protection is currently enabled. To disable protection click the button to the right.
Events
Total events: 5 ™
- - -
Detection Time Detected As Detection Type Action Taken Scan Object Path Target Name Appl I catl on
© 1/16/2014 3:43:31PM BehaviorMSR! Trojan Continue Chwindows\systern32\d... REGISTER_MSR
o Y,
@) Event Details == P ~
Detection Type: Trojan operatl ng syStem
N J
Detected As: Behavior:MSR! P -
Detection Time: 1/16/2014 3:43:31 PM Rootkit Detector
Target Namne: REGISTER_MSR.
Action Taken: Continue
Scan Object Path: Ciwindows\system32\driversidbgv.sys
[lear List
L £
. | T

Fig: Exploit triggers MSR alert

Deepsafe continued

Deepsafe has also the ability to detect the attempt to clear
CR4.SMEP - so an exploit should not attempt to bypass
SMEP via CR4.SMEP-clearing trampoline

However, Deepsafe (at least currently) does not detect the
mere escalation to kernelmode — the kernelmode payload
just needs to be careful to not behave in a way that is
covered by Deepsafe detection methods

Backing phys frame overwrite

sysenter in ntdll sysenter in ntdll
SharedUserData SharedUserData
y ! Yy Y
G’age tat\les fo Pdge tablels for @

@ ILABS

Backing phys frame overwrite cntd

How to overwrite the backing frame?
Just set R/W bit in any PTE for the frame
Again, PTE is mapped at the known location

Ability to inject hook in all processes, no kernel AP| used
What to overwrite ?
SharedUserData, actual syscall invocation in ntdll

Where to place the hook code?
Unused end of page in any library

Chrome:

Find Waldo, picture

& 10.254.239.11 - Remote Desktop Connection -

- - 1 “» 1 -

1 7 SISIDSService.exe:1868 Properties = = || =

Image | Performance I Performance Graph] Disk and Metwork |
Services | Theads | TCPIIP | Secuity | Environment | Stings |

% Services registered in this process:

Service Display Name
SISIDSService Symantec Critical System Protection IDS Agent

gle

[services.exe:612 Properties =0lic]

Image | Performance | Performance Graph | Disk and Network
Threads TCPIP Securty | Environment | Strings

Resolve addiesses

Protocol Local Addess Remote Address Stale
TCP 000049157 00000 LISTENING
TCPYVE (0:0.000000}49157 (6000000010 LISTENING

\@ McAfee Deep Defender Protection Status

Protection is currently enabled. To disable protection click the button to the right.

Events
Total events:

Detection Time Detected As

Detection Type ActionTaken Scan Object Path
© 4/15/2014115231... [3200] McAfee Deep Def.. Integrity Check MoneTaken Not Applicable

Target Name
Mot Applicable

Disable

[#] emd.exe [2]

Microsoft Ui ion 6.1.

681]
[Copyright Microsoft Corporation.

reserved.

ragran Files\Sandboxie>\Wsers\userd2iesaksepathcl.exe —-targetpid=612 km_n

10 €8]

Configure.., J
T9548K
5004k | & Sandboxie Control = ==
129%K
10192K -
2008 K Program Name PID Window Title
PR
ocessesi 50 pl | =9 Sandbox DefaultBox Active
icd B | sandboxieRpcSsiexe 4mn
e B ! sandboxieDcomLaunch.exe 6064
B 'emdexe 2720

LABS

Find Waldo, picture 2

& 10.254.239.11 - Remote Desktop Connection -

1] SISIDSService.exe:1868 Properties o =] =

Image | Performance | Performance Graph | Disk.and Network

Services | Thresds | TCPIP | Securty | Envionment | Stings |

% Services registered in this process:

Google N
i Service Display Name
i Piotecton DS Agen
@ 81 services.exe512 Properties o [
Image | Performance | Performance Graph | Disk and Network
Sandboxed Threads TCRiIP Securtty | Envionment | strings
W,

Web Browser
Resolve addresses

Protocol Local Address Remote Address State

TP 0.0.0.0:49157 0.0.000 LISTENING
Tce 0.0.0.0:4444 00.000 LISTENING
TOPVE (0000000049157 [0:00:0000010 LISTENING

= - -

(& McAfee Deep Defender Protection Status

Protection is currently enabled. To disable protection click the button to the right.

Events

Total events:
Detection Time Detected s

@ 4/15/2014 11:52:31... [3200] McAfee Deep Def...

Detection Type Action Taken
Integrity Check Mone Taken

Scan Object Path
Not Applicable

Target Narne
Not Applicable

Configure.

[#] cmd.exe [#]

id=612 kn_mig

o) o)

TZIEEK
10220 | & Sandboxie Control
2008K
BILK
BOK Program Name PID Window Title
ae
ocesses:51 p| | & Sandbox DefaultBox Active
B ! sandbonieRpcSs.exe an
B | sendboxieDcomLaunch.exe 6064
B cmdece 2720

- % iE 4y

LABS

@ lLABS

WTF?7?LOL

Conclusion

Kernel cannot protect against itself

A reliable kernel exploit can lead to a ‘Swiss army knife’
malware

Despite various layers, most current solutions have
architectural deficiencies to defend against such attacks

A robust abstraction layer like VMM raises the bar
significantly to defend against such attacks

References @ LABS

[1] Michael Vincent and Abhishek Singh, ,How Advanced Malware Bypasses Process Monitoring”,
http://www.fireeye.com/blog/technical/malware-research/2012/06/bypassing-process-monitoring.html

[2] Jared Demott, ,Bypassing EMET 4.1”, http://bromiumlabs.files.wordpress.com/2014/02/bypassing-emet-4-

1.pdf
[3] Mateusz ‘j00ru’ Jurczyk & Gynvael Coldwind, ,SMEP: What is it, and how to beat it on Windows”,
http://j00ru.vexillium.org/?p=783

[4] bugcheck & skape, ,Kernel-mode Payloads on Windows”, hitp://uninformed.org/index.cqi?v=3&a=4
[5] https://labs.mwrinfosecurity.com/blog/2013/03/06/pwn2own-at-cansecwest-2013/
[6] https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/

[7] hﬁt /://nakedsecuritv.sophos.com/2014/02/27/notorious—qameover-maIware—qets—itself—a—kernel-mode-
rootkit/

[8] http://www.welivesecurity.com/2012/12/27/win32gapz-steps-of-evolution/

[9] http://www.fireeye.com/blog/technical/cyber-exploits/2013/12/cve-2013-33465065-technical-analysis.html
[10] http://labs.bromium.com/2013/10/22/the-latest-tdl4-and-cve-2013-3660-exploit-enhancements

[11] http://www.mcafee.com/us/resources/reports/rp-defeating-patchguard.pdf

LABS

Q&A
Thanks!

W @rckashyap

http://labs.bromium.com/

