
REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot

Conclusion

Samuel Chevet

REboot: Bootkits Revisited

Samuel Chevet

29 May 2014



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot

Conclusion

Samuel Chevet

Agenda

Describe what a bootkit is
How the Windows boot process works
State of the art in the real world
REboot project
Conclusion



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot

Conclusion

Samuel Chevet

Plan

1 Bootkit



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot

Conclusion

Samuel Chevet

Rootkit

Type of "malicious" software
Kernel-Land
Full control
Hide malicious stuff

Adding / Replacing portions of OS
Proprietary software protections used it sometimes



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot

Conclusion

Samuel Chevet

Bootkit

Problem with x64 version
Driver signing is mandatory
Buy or steal certificate ?
Kernel Protection

New attack
Compromise the boot process
Subvert 64-bit kernel mode driver signing
Load malicious driver
Botnets: Spam, steal credentials, DDOS, . . .



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot

Conclusion

Samuel Chevet

Bootkit

Problem with x64 version
Driver signing is mandatory
Buy or steal certificate ?
Kernel Protection

New attack
Compromise the boot process
Subvert 64-bit kernel mode driver signing
Load malicious driver
Botnets: Spam, steal credentials, DDOS, . . .



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot

Conclusion

Samuel Chevet

Bootkit

Bootkits’ evolution (http://www.welivesecurity.com/ c©)

http ://www.welivesecurity.com/


REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Plan

2 Basics
Boot process

BIOS
MBR
VBR
BootMGR
Winload

Chain of trust



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Boot process



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Plan

2 Basics
Boot process

BIOS
MBR
VBR
BootMGR
Winload

Chain of trust



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

BIOS

Initialize and test the system hardware components
Executed in Real mode
Transfer execution to some other medium :

Disk drive
CD-ROM
Network boot

Load first sector of hardware drive at 0000:7C00
First sector is called Master Boot Record(MBR)

Some bogus BIOSes jump to 07C0:0000 instead of
0000:7C00



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Boot process



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Plan

2 Basics
Boot process

BIOS
MBR
VBR
BootMGR
Winload

Chain of trust



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Master Boot Record

Executed in Real mode
Copies itself to 0000:0600
Searches bootable partition inside partition table
Copies first sector of bootable partition at 0000:7C00
Jump to 0000:7C00



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Boot process



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Plan

2 Basics
Boot process

BIOS
MBR
VBR
BootMGR
Winload

Chain of trust



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Volume Boot Record

1 sector containing Bios Parameter Block (BPB)
BPB structure is completely different from FAT to
NTFS
BPB uses HiddenSectors field to load Initial
Program Loader (IPL)
Jump to it



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Initial Program Loader

Ability to read FAT32 and NTFS
Load BootMGR at 2000h:0000h (0x20000)
Jump to it
Or NTLDR for older version (branch is still here ;))



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Boot process



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Plan

2 Basics
Boot process

BIOS
MBR
VBR
BootMGR
Winload

Chain of trust



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

BootMGR

Map a 32 bit embedded executable to 0x400000
Activate protected mode
Load GDT, IDT
Checksum of the embedded file



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

BootMGR 32

Ability to use symbols (.pdb) from Microsoft
BmMain(x), BmFwVerifySelfIntegrity(x),
ImgpLoadPEImage()
Check for hibernation state

Hibernation state TRUE
Load Winresume.exe

Hibernation state FALSE
Mount BCD database, and enumerate boot entries,
settings, . . .
Change CPU mode to 64 bits
Load Winload.exe (BmpLaunchBootEntry(x, x, x))



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Boot process



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Plan

2 Basics
Boot process

BIOS
MBR
VBR
BootMGR
Winload

Chain of trust



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Winload

Setup minimal 64 bits kernel
Enable paging
Get Boot Options (DISABLE_INTEGRITY_CHECKS,
TESTSIGNING, . . . )
Load BCD entries
Fill LOADER_PARAMETER_BLOCK
Load SYSTEM Hives (system32\config\system)
Load Ntoskrnl.exe, hal.dll,
SERVICE_BOOT_START drivers
Create PsLoadedModuleList



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Winload

GDT Entry
Code entry for long mode
Code entry for protected mode
Data entry for protected mode
Tss for long mode
Code entry for real mode
Data entry for real mode
Data entry for framebuffer (0x000B8000)



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Winload

BIOS interruption while in Long mode
Winload needs to read / write files
Print UI, get keyboard input, . . .
Winload is able to execute BIOS interruption



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Boot process



REboot: Bootkits
Revisited

Bootkit

Basics
Boot process

BIOS

MBR

VBR

BootMGR

Winload

Chain of trust

State of the art

REboot

Conclusion

Samuel Chevet

Chain of trust



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art
Type of infection

Payload

Problems

REboot

Conclusion

Samuel Chevet

Plan

3 State of the art
Type of infection
Payload
Problems



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art
Type of infection

Payload

Problems

REboot

Conclusion

Samuel Chevet

State of the art

In 2010, bad guys started to attack 64 bits system
TDL, aka Alureon family of malware

Some Bootkits
TDL4
Turla
gapz
xpaj
Cidox
yurn
prioxer
rovnix
. . .



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art
Type of infection

Payload

Problems

REboot

Conclusion

Samuel Chevet

Type of infection

Bootkit techniques (http://www.welivesecurity.com/ c©)

http ://www.welivesecurity.com/


REboot: Bootkits
Revisited

Bootkit

Basics

State of the art
Type of infection

Payload

Problems

REboot

Conclusion

Samuel Chevet

Payload

Keep control during all bootprocess stages until
Ntoskrnl.exe loading
Final malicious payload is injected during
Ntoskrnl.exe stage



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art
Type of infection

Payload

Problems

REboot

Conclusion

Samuel Chevet

Payload

BIOS provides interruptions
int 013h (Function : 042h) : Extended Read Sectors
Hook this interruption
Same technique used in all infection methods



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art
Type of infection

Payload

Problems

REboot

Conclusion

Samuel Chevet

Hook interest

Scan all disk read operations inside hook
Patch file in memory
Setup new trampoline in next stage
(Ex : from MBR -> VBR, VBR -> BootMGR, . . . )
Final goal is to reach Ntoskrnl.exe loading
Load unsigned drivers
Disable Kernel Protection

Open Source Project
StonedBootkit
VBootkit
DreamBoot
. . .



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art
Type of infection

Payload

Problems

REboot

Conclusion

Samuel Chevet

Problems

Focused only on executable (VBR, BootMGR_16,
BootMGR_32, Windload)
Most bootkits rely on code modifications and hooks:

Those are setuped based on patterns matching and
hardcoded offsets
Require to patch the chain of trust

Those techniques are not reliable:
Not generic across all Windows versions
TrueCrypt & BitLocker are not supported (one
project setup two hook layers)
Can easily be detected



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Plan

4 REboot
Research
Real mode to Protected mode
Protected mode to Long mode
Winload to Ntoskrnl
Payload



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Research

Create a proof of concept able to control all
bootprocess stages until Windows kernel startup
Not based on currently well known techniques

Goal
Find a new way to implement bootkits on Windows
using generic methods
Bypass Windows bootprocess chain of trust
Load unsigned drivers at boot



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Ideas

Main problems are CPU mode switches while
booting:

Real mode (16 bits)
Protected mode (32 bits)
Long mode (64 bits)

We want to be able to execute arbitrary code at each
stage
Without using hooks or scanning patterns in
memory
So we only use provided processor features!



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Four main steps

1 From Real mode (16 bits) to Protected mode (32 bits)
2 From Protected mode to Long mode (64 bits,

Winload)
3 From Winload to Ntoskrnl
4 Payload execution



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

4 Steps



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Plan

4 REboot
Research
Real mode to Protected mode
Protected mode to Long mode
Winload to Ntoskrnl
Payload



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Virtual 8086 mode

Virtual 8086 mode is a sub-mode of Protected mode
V86 allows to execute 8086 code under protected
mode
NTVDM
Virtual machine (VM) bit in the EFLAGS (bit #17)
register is set
We need only one task
popf does not work, use iret or 386 TSS
Trap on privileged instruction, like lgdt



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Virtual 8086 mode

Problem encountered
At first we used an I/O privilege level (IOPL) equal
to 3
Only exceptions during privilegied instructions
TPM BIOS interruption (0x1A) setup a protected
mode
False positive detection of BootMGR



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Virtual 8086 mode

Solution
Use IOPL equal to 1
When an interruption is trying to be executed

1 We setup back real mode CPU
2 Execute it
3 We go back to v8086 mode



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Virtual 8086 mode

Step by Step
Setup Protected mode
Load original MBR
Setup and enable VM 86 mode
Jump to original MBR
Manage all exceptions
GP Handler executed during lgdt instruction



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Real mode to Protected mode

First step has been solved using V8086 mode



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Plan

4 REboot
Research
Real mode to Protected mode
Protected mode to Long mode
Winload to Ntoskrnl
Payload



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Protected mode to Long mode

With V8086 mode, we control until BootMGR_32
BootMGR_32 must :

Prepare Long mode in case of 64 bits kernel
Setup new GDT and IDT
Enable paging

This new IDT must be placed on an allocated page
All these operations are carried out by
ImgArchPcatStartBootApplication() function



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Protected mode to Long mode

ImgArchPcatStartBootApplication()
Setup a page for new GDT and IDT
Use sidt instruction to get current IDT entries
(created by BootMGR_16) and copy them to the new
one
Test IMAGE_FILE_HEADER->Machine for starting
32 bits application or 64 bits

ImgPcatStart64BitApplication()
Case for 64 bits application
Reset all new IDT entries because it is invalid for
Long mode



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Protected mode to Long mode

When in protected mode we can :
Use Debug registers (dr0 . . . dr3)
Setup Debug Interrupt (0x1)
We control until Winload execution



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Protected mode to Long mode



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Protected mode to Long mode

Second step has been solved using debug registers



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Plan

4 REboot
Research
Real mode to Protected mode
Protected mode to Long mode
Winload to Ntoskrnl
Payload



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Winload to Ntoskrnl

With debug registers, we control until Winload
Winload starts with an empty IDT_64

BlpArchInstallTrapVectors()
Retrieve IDTR with ArchGetIdtRegister() and setup
new Long mode entries

We can setup a DRX on access on these entries before
switching from Protected mode to Long mode



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Winload to Ntoskrnl



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Winload to Ntoskrnl

Now we can control execution "inside" Winload
We want to monitor the transition between Winload
and Ntosknrl
Winload will setup a new GDT and IDT before
jumping to kernel
We can follow these operations by tracing privileged
instructions
So we run Winload’s code at ring 1 privilege (DPL=1)

Why ring 1?
Winload sections are in paged area

Intel 64 and IA-32 Architectures Developer’s Manual: Vol. 3A 4-38



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Ring 1

Setup new Code / Data segment with DPL = 1
Setup General Protection fault handler
Fill rsp0 field inside TSS_64

GP Handler
Check where the fault occured
Check what privileged instruction occured
Copy it and execute it somewhere else
Or "emulate" it



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Ring 1

Example
mov ds, ax
mov rax, cr3
jmp far . . .
. . .



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Ring 1 : Special cases

mov ds, ax
In PcatX64SuCallback
Winload wants to update data segment to perform a
BIOS interrupt (swich from long mode to real mode)
At this point, restore ring0 to avoid any problem
Wait come back from real mode (jmp far
10h:343D31h)

jmp far XX:YYYY
Fault occurs because DPL != RPL
Update cs, ss and ip before iretq

mov ss, ax
Happen just after jmp:far
Avoid instruction



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Winload to Ntoskrnl

All other cases can be copied and executed from
somewhere else
Last case is lgdt fword ptr [rax]
In function : OslArchTransferToKernel
Just before jumping into Ntoskrnl.exe
First parameter of KiSystemStartup() is
LOADER_PARAMETER_BLOCK
+0x10 : _LDR_DATA_TABLE_ENTRY (boot driver)



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Winload to Ntoskrnl

Third step has been solved using ring protection



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Plan

4 REboot
Research
Real mode to Protected mode
Protected mode to Long mode
Winload to Ntoskrnl
Payload



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Just before Ntoskrnl.exe

Inject our own driver in the PsLoadModuleList
We have access to ntoksrnl’s APIs
But we cannot use it because kernel is not initialised
So replace EntryPoint of known drivers
But most of driver’s entry point are called from
hal.dll, kernel is still not fully initialised
So replace export function of kdcom.dll
(KdDebuggerInitialize1)



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Payload

We do not want to inject specific payload
Goal is loading unsigned drivers
Use undocumented method to avoid signature
checking

Undocumented method
IoCreateDriver(PUNICODE_STRING DriverName,
PDRIVER_INITIALIZE InitializationFunction)
Function exported by Ntoskrnl.exe in order to create
a driver object
DriverName can be null



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Payload

We do not want to inject specific payload
Goal is loading unsigned drivers
Use undocumented method to avoid signature
checking

Undocumented method
IoCreateDriver(PUNICODE_STRING DriverName,
PDRIVER_INITIALIZE InitializationFunction)
Function exported by Ntoskrnl.exe in order to create
a driver object
DriverName can be null



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Payload

InitializationFunction
Open and Read (PE) driver file
Map sections in memory
Resolve imports
Fix image relocations
Fill information of DRIVER_OBJECT
Call entry point



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot
Research

Real mode to Protected
mode

Protected mode to Long
mode

Winload to Ntoskrnl

Payload

Conclusion

Samuel Chevet

Driver example

Patch msv1_0!MsvpPasswordValidate from LSASS
process
Escalate privileges of any cmd.exe command
Change behavior of CTRL+ALT+DEL
. . .



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot

Conclusion

Samuel Chevet

Plan

5 Conclusion



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot

Conclusion

Samuel Chevet

Demo

Demo time !



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot

Conclusion

Samuel Chevet

TODO

Still work to be done
Implementing UEFI (without SecureBoot)
More work to do with BitLocker or TrueCrypt:
Extract passphrase at boot



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot

Conclusion

Samuel Chevet

Conclusion

Real interest to use bootkit techniques, for loading
unsigned drivers
REBoot uses no memory modifications!
Chain of trust defeated
Works on all 64 bits Windows versions
Virtual environments or emulated environments
Physical machines with BIOS or UEFI legacy
Does not work if UEFI Secureboot is present



REboot: Bootkits
Revisited

Bootkit

Basics

State of the art

REboot

Conclusion

Samuel Chevet

Questions ?

Thank you for your attention


	Bootkit
	Basics
	Boot process
	Chain of trust

	State of the art
	Type of infection
	Payload
	Problems

	REboot
	Research
	Real mode to Protected mode
	Protected mode to Long mode
	Winload to Ntoskrnl
	Payload

	Conclusion

