
RESTing On Your Laurels Will Get
You Pwned

By Abraham Kang, Dinis Cruz, and
Alvaro Muñoz

Goals and Main Point

• Originally a 2 hour presentation so we will only be
focusing on identifying remote code execution and
data exfiltration vulnerabilities through REST APIs.

• Remember that a REST API is nothing more than a web
application which follows a structured set of rules.
– So all of the previous application vulnerabilities still apply:

SQL Injection, XSS, Direct Object Reference, Command
Injection, etc.

• If you have both publically exposed and internal REST
APIs then you probably have some remote code
execution and data exfiltration issues.

Causes of REST Vulnerabilities
• Location in the trusted network of your data center

• History of REST Implementations

• Self describing nature

• Input types and interfaces

• URLs to backend REST APIs are built with
concatenation instead of URIBuilder (Prepared URI)

• Inbred Architecture

• Extensions in REST frameworks that enhance
development of REST functionality

• Reliance on incorrectly implemented protocols
(SAML, XML Signature, XML Encryption, etc.)

• Incorrect assumptions of application behavior

Application Architecture Background

FW

 Internet

B
H

2

FW

A
S2

SA
P

FW

 Internet

B
H

5

FW

A
S5

…

FW

 Internet

B
H

4

FW

A
S4

ER
P

FW

B
H

1

FW

A
S1

O
ra

cl
e

FW

 Internet

B
H

3

FW

A
S3

M
S

SQ
L

Internet

Mongo

Couch

Neo4j

Cassan

LDAP/
AD

HBase

EAI
EII

ESB

Http Protocol (proprietary protocols are different colors)

…

Internal Network of a Data Center

What are the
characteristics of an
Internal Network
(BlueNet,
GreenNet, Trusted
Network)?

A
S2

SA
P

A
S5

…

A
S4

ER
P

A
S1

O
ra

cl
e

A
S3

M
S

SQ
L

Mongo

Couch

Neo4j

Cassan

LDAP/
AD

HBase

EAI
EII

ESB

…

Internal Network of a Data Center
What are the
characteristics of an
Internal Network (BlueNet,
GreenNet, Trusted
Network)?
• Connectivity Freedom

(within the trusted
network)

• Increased Physical Safe
guards

• Hardened Systems at
the OS level

• Shared Services and
Infrastructure

A
S2

SA
P

A
S5

…

A
S4

ER
P

A
S1

O
ra

cl
e

A
S3

M
S

SQ
L

Mongo

Couch

Neo4j

Cassan

LDAP/
AD

HBase

EAI
EII

ESB

…

REST History
• Introduced to the world in a PHD dissertation

by Roy Fielding in 2000.

• Promoted the idea of using HTTP methods
(PUT, POST, GET, DELETE) and the URL itself to
communicate additional metadata as to the
nature of an HTTP request.
– PUT = Update

– POST = Insert

– GET = Select

– DELETE = Delete
• Allowed the mapping of DB interactions on top of self

descriptive URLs

REST History (con’t)
• When REST originally came out, it was harshly

criticized by the security community as being
inherently unsafe.
– As a result REST, applications were originally

developed to only run on internal networks (non-
public access).
• This allowed developers to develop REST APIs in a kind

of “Garden of Eden”

– This also encouraged REST to become a popular
interface for internal backend systems.

– Once developers got comfortable with REST
internal applications they are now RESTifying all
publically exposed application interfaces

Attacking Backend Systems (Old School)

FW

 Internet

B
H

2

FW

A
S2

SA
P

FW

 Internet

B
H

5

FW

A
S5

…

FW

 Internet

B
H

4

FW

A
S4

ER
P

FW

B
H

1

FW

A
S1

O
ra

cl
e

FW

 Internet

B
H

3

FW

A
S3

M
S

SQ
L

Attacker

Mongo

Couch

Neo4j

Cassan

LDAP/
AD

HBase

EAI
EII

ESB

Http Protocol (proprietary protocols are different colors)

…

Attacking An Internal Network (Old School)
• Pwn the application server
• Figure out which systems are

running on the internal
network and target a data rich
server. (Port Scanning and
Fingerprinting)

• Install client protocol binaries
to targeted system (in this
case SAP client code) so you
can connect to the system.

• Figure out the correct
parameters to pass to the
backend system by sniffing
the network, reusing
credentials, using default
userids and passwords,
bypassing authentication, etc.

A
S2

SA
P

A
S5

…

A
S4

ER
P

A
S1

O
ra

cl
e

A
S3

M
S

SQ
L

Mongo

Couch

Neo4j

Cassan

LDAP/
AD

HBase

EAI
EII

ESB

…

X Non-compromised machine

Y Compromised/Pwned machine

Attacking An Internal Network (REST style)
• Find an HTTP proxy in the publically

exposed Application/REST API or get
access to curl on a compromised
system in the internal network

• Figure out which systems are
running on the internal network and
target a data rich server. (Port
Scanning and Fingerprinting is easier
because the REST protocol is self
describing)

• Exfiltrate data from the REST
interface of the backend system and
pass the correct parameters by
sniffing the network, reusing
credentials, using default userids
and passwords, bypassing
authentication, reading server logs
to find apiKeys, etc.

SA
P

 R
ES

T
A

P
I

SA
P

A
S5

…

P
u

b
 R

ES
T

A
P

I

O
ra

cl
e

Mongo

Couch

Neo4j

Cassan

HBase

… X Non-compromised machine

Y Affected machine

R
ES

T
A

P
I

R
ES

T
A

P
I

R
ES

T
A

P
I

R
ES

T
A

P
I

R
ES

T
A

P
I

R
ES

T
A

P
I

REST is Self Describing

• What URL would you first try when gathering
information about a REST API and the system
that backs it?

REST is Self Describing
• What URL would you first try when gathering

information about a REST API and the system that
backs it?
– http://host:port/

• Compare this to:

– Select * from all_tables (in Oracle)
– sp_msforeachdb 'select "?" AS db, * from [?].sys.tables'

(SQL Server)
– SELECT DISTINCT TABLE_NAME FROM

INFORMATION_SCHEMA.COLUMNS WHERE
COLUMN_NAME IN ('columnA','ColumnB') AND
TABLE_SCHEMA='YourDatabase'; (My SQL)

– Etc.

http://host:port/

Especially for NoSQL REST APIs

• All of the following DBs have REST APIs which
closely follow their database object structures

– HBase

– Couch DB

– Mongo DB

– Cassandra.io

– Neo4j

HBase REST API
• Find the running HBase version:

– http://host:port/version

• Find the nodes in the HBase Cluster:

– http://host:port/status/cluster

• Find all the tables in the Hbase Cluster:

– http://host:port/

Returns: customer and profile

• Find a description of a particular table’s
schema(pick one from the prior link):

– http://host:port/profile/schema

http://host:port/version
http://host:port/status/cluster
http://host:port/

Couch DB REST API
• Find all databases in the Couch DB:

– http://host:port/_all_dbs

• Find all the documents in the Couch DB:

– http://host:port/{db_name}/_all_docs

http://host:port/_all_dbs
http://host:port/_all_documents

Neo4j REST API
• Find version and extension information in the

Neo4j DB:

– http://host:7474/db/data/

http://host:port/_all_dbs

Mongo DB REST API
• Find all databases in the Mongo DB:

– http://host:port/

– http://host:port/api/1/databases

• Find all the collections under a named
database ({db_name}) in the Mongo DB:

– http://host:port/api/1/database/{db_name}/colle
ctions

http://host:port/_all_dbs

Cassandra.io REST API
• Find all keyspaces in the Cassandra.io DB:

– http://host:port/1/keyspaces

• Find all the column families in the
Cassandra.io DB:

– http://host:port/1/columnfamily/{keyspace_name
}

REST Input Types and Interfaces

• Does anyone know what the main input types
are to REST interfaces?

REST Input Types and Interfaces

• Does anyone know what the main input types
are to REST interfaces?

– XML and JSON

XML Related Vulnerabilities

• When you think of XML--what vulnerabilities
come to mind?

XML Related Vulnerabilities

• When you think of XML--what vulnerabilities
come to mind?

– XXE (eXternal XML Entity Injection) / SSRF (Server
Side Request Forgery)

– XSLT Injection

– XDOS

– XML Injection

– XML Serialization

XXE (File Disclosure and Port Scanning)
• Most REST interfaces take raw XML to de-serialize into

method parameters of request handling classes.
• XXE Example when the name element is echoed back in

the HTTP response to the posted XML which is parsed
whole by the REST API:

<?xml encoding=“utf-8” ?>
<!DOCTYPE Customer [<!ENTITY y SYSTEM ‘../WEB-
INF/web.xml’>]>
<Customer>
<name>&y;</name>
</Customer>

*See Attacking <?xml?> processing by Nicolas Gregoire
(Agarri)

XXE Demo

XXE (Remote Code Execution)
• Most REST interfaces take raw XML to de-serialize into

method parameters of request handling classes.
• XXE Example when the name element is echoed back in

the HTTP response to the posted XML which is parsed
whole by the REST API:

<?xml encoding=“utf-8” ?>
<!DOCTYPE Customer [<!ENTITY y SYSTEM ‘expect://ls’>]>
<Customer>
<name>&y;</name>
</Customer>

*See XXE: advanced exploitation, d0znpp, ONSEC
How does the expect:// protocol work???

SSRF
• Anything which looks like a URI/URL in XML is a

candidate for internal network port scanning or data
exfiltration.

• WS-Addressing example:

<To xmlns=http://www.w3.org/2005/08/addressing>

http://MongoServer:8000</To>

*See: SSRF vs. Business-critical Applications Part 2:
New Vectors and Connect-Back Attacks by Alexander
Polyakov

http://www.w3.org/2005/08/addressing
http://MongoServer:8000</To

XML Serialization Vulns
• Every REST API allows the raw input of XML to be

converted to native objects. This deserialization
process can be used to execute arbitrary code on
the REST server.

– REST APIs which use XStream and XMLDecoder
where found to have these vulnerabilities

• When xml is directly deserialized to ORM objects
and persisted, an attacker could supply fields
which are externally hidden but present in the
database (i.e. role(s)) This usually occurs in the
user or profile updating logic of a REST API.

XML Serialization Remote Code
Execution – XStream (Demo)

• Alvaro Munoz figured this out

XML Serialization Remote Code
Execution – XMLDecoder(Demo)

XML Serialization Mass Assignment
(Demo)

URLs to backend REST APIs are built
with concatenation instead of

URIBuilder (Prepared URI)

• Most publically exposed REST APIs turn around
and invoke internal REST APIs using
URLConnections, Apache HttpClient or other
REST clients. If user input is directly
concatenated into the URL used to make the
backend REST request then the application could
be vulnerable to Extended HPPP.

Extended HPPP (HTTP Path & Parameter Pollution)
• HPP (HTTP Parameter Pollution) was discovered by Stefano di Paola and

Luca Carettoni in 2009. It utilized the discrepancy in how duplicate
request parameters were processed to override application specific
default values in URLs. Typically attacks utilized the “&” character to
fool backend services in accepting attacker controlled request
parameters.

• Extended HPPP utilizes matrix and path parameters as well as path
segment characters to change the underlying semantics of a REST URL
request.
– “#” can be used to remove ending URL characters similar to “--” in SQL

Injection and “//” in JavaScript Injection
– “../” can be used to change the overall semantics of the REST request in

path based APIs (vs query parameter based)
– “;” can be used to add matrix parameters to the URL at different path

segments
– The “_method” query parameter can be used to change a GET request to a

PUT, DELETE, and sometimes a POST (if there is a bug in the REST API)
– Special framework specific query parameters allow enhanced access to

backend data through REST API. The “qt” parameter in Apache Solr

Extended HPPP (Demo)

Inbred Architecture
• Externally exposed

REST APIs typically use
the same
communication
protocol (HTTP) and
REST frameworks that
are used in internal
only REST APIs.

• Any vulnerabilities
which are present in
the public REST API
can be used against
the internal REST APIs.

SA
P

 R
ES

T
A

P
I

SA
P

A
S5

…

P
u

b
 R

ES
T

A
P

I

O
ra

cl
e

Mongo

Couch

Neo4j

Cassan

HBase

…

R
ES

T
A

P
I

R
ES

T
A

P
I

R
ES

T
A

P
I

R
ES

T
A

P
I

R
ES

T
A

P
I

R
ES

T
A

P
I

Extensions in REST frameworks that enhance
development of REST functionality

• Turns remote code execution from a security
vulnerability into a feature.

– In some cases it is subtle:

• Passing in partial script blocks used in evaluating the
processing of nodes.

• Passing in JavaScript functions which are used in map-
reduce processes.

– In others it is more obvious:

• Passing in a complete Groovy script which is executed as a
part of the request on the server. Gremlin Plug-in for
Neo4j.

Rest Extensions Remote Code
Execution(Demo)

Reliance on incorrectly implemented
protocols (SAML, XML Signature, XML

Encryption, etc.)
• SAML, XML Signature, XML Encryption can be subverted

using wrapping based attacks.*

See: How to Break XML Encryption by Tibor Jager and Juraj
Somorovsky, On Breaking SAML: Be Whoever You Want to Be
by Juraj Somorovsky, Andreas Mayer, Jorg Schwenk, Marco
Kampmann, and Meiko Jensen, and How To Break XML
Signature and XML Encryption by Juraj Somorovsky (OWASP
Presentation)

Incorrect assumptions of REST
application behavior

• Guidance related to REST implementation of
security take adhering to REST principles over
security

• REST provides for dynamic URLs and dynamic
resource allocation

Incorrect assumptions of REST
application behavior (Example 1)

• According to many REST authentication guides
on the Internet, an “apiKey” passed as a GET
parameter is the best way to keep track of
authenticated users with stateless sessions.

Incorrect assumptions of application
REST behavior (Example 1)

• According to many REST authentication guides
on the Internet, an “apiKey” passed as a GET
parameter is the best way to keep track of
authenticated users with stateless sessions.

• But HTTP GET Parameters are usually exposed in
proxy logs, browser histories, and HTTP server
logs.

REST provides for dynamic URLs and
dynamic resource allocation

Example Case Study
• You have an Mongo DB REST API which exposes two

databases which can only be accessed at /realtime/*
and /predictive/*

• There are two ACLs which protect all access to each
of these databases

<web-resource-name>Realtime User</web-resource-name> <url-
pattern>/realtime/*</url-pattern>

<web-resource-name>Predictive Analysis User</web-resource-name>
<url-pattern>/predicitive/*</url-pattern>

Can anyone see the problem? You should be able to
own the server with as little disruption to the existing
databases.

Example Case Study Exploit
• The problem is not in the two databases. The

problem is that you are working with a REST API
and resources are dynamic.

• So POST to the following url to create a new
database called test which is accessible at
“/test”:
 POST http://svr.com:27080/test

• The POST the following:
 POST http://svr.com:27080/test/_cmd

– With the following body:

 cmd={…, “$reduce”:”function (obj, prev) {
malicious_code() }” …

http://svr.com:27080/test/_cmd
http://svr.com:27080/test/_cmd

REST Attacking Summary
• Attack serialization in the exposed XML/JSON

interfaces to execute remote code

• Attack the proxied requests to backend systems
using Extended HPPP

• Use XXE/SSRF to read local config files, execute
arbitrary code, or port scan and attack other
internal REST exposed applications

• Look for other internal REST APIs through
HATEOAS links in XML responses

• By-pass authentication

Questions

?

