

Defending Networks with Incomplete Information: A Machine Learning Approach

Alexandre Pinto alexcp@mlsecproject.org @alexcpsec @MLSecProject

Agenda

- Security Monitoring: We are doing it wrong
- Machine Learning and the Robot Uprising
- More attacks = more data = better defenses
- Case study: Model to detect malicious agents
- MLSec Project
- Acknowledgments and thanks

Who's this guy?

- 12 years in Information Security, done a little bit of everything.
- Past 7 or so years leading security consultancy and monitoring teams in Brazil, London and the US.

- If there is any way a SIEM can hurt you, it did to me.

• Researching machine learning and data science in general for the past year or so. Active competitor in Kaggle machine learning competitions.

The Monitoring Problem

- Logs, logs everywhere
- Where?
 - Log management
 - SIEM solutions
- Why?
 - Compliance
 - Incident Response

Monitoring / Log Management is Hard

- Gartner Magic Quadrant for Security Information and Event Management 2013.
 - "Organizations are failing at early breach detection, with more than 92% of breaches undetected by the breached organization"
 - "We continue to see large companies that are re-evaluating SIEM vendors to replace SIEM technology associated with partial, marginal or failed deployments."
- Are these the right tools for the job?

Monitoring / Log Management is Hard

 SANS Eighth Annual 2012 Log and Event Management Survey Results (http://www.sans.org/reading_room/analysts_program/SortingThruNoise.pdf)

Not exclusively a tool problem

- However, there are individuals who will do a good job
- How many do you know?
- DAM hard (ouch!) to find these capable professionals

Next up: Big Data Technologies

- How many of these very qualified professionals will we need?
- How many know/ will learn statistics, data analysis, data science?

Next up: Big Data Technologies

- How many of these very qualified professionals will we need?
- How many know/ will learn statistics, data analysis, data science?

We need an Army! Of ROBOTS!

Enter Machine Learning

- "Machine learning systems automatically learn programs from data" (*)
- You don't really code the program, but it is inferred from data.
- Intuition of trying to mimic the way the brain learns: that's where terms like *artificial intelligence* come from.

(*) CACM 55(10) - A Few Useful Things to Know about Machine Learning (Domingos 2012)

Applications of Machine Learning

 Image and Voice Recognition

Trading

Kinds of Machine Learning

- Supervised Learning:
 - Classification (NN, SVM, Naïve Bayes)
 - Regression (linear, logistic)

- Unsupervised Learning :
 - Clustering (k-means)
 - Decomposition (PCA, SVD)

Source – scikit-learn.github.io/scikit-learn-tutorial/general_concepts.html

Remember SPAM filters?

- The original use case for ML in Information Security
- Remember the "Bayesian filters"? There you go.
- How many talks have you been hearing about SPAM filtering lately?;)

So what is the fuss?

- Models will get better with more data
 - We always have to consider bias and variance as we select our data points
- "I've got 99 problems, but data ain't one"

Abu-Mostafa, Caltech, 2012

Designing a model to detect external agents with malicious behavior

- We've got all that log data anyway, let's dig into it
- Most important thing is the "feature engineering"

Model: Data Collection

- Firewall block data from SANS DShield (per day)
- Firewalls, really? Yes, but could be anything.
- We get summarized "malicious" data per port

> sans								
	date	ip	targetPort	protocol	reports	targets	firstSeen	lastSeen
1:	20130622	89.248.171.125	80	TCP	64853	64775	00:14:14	17:51:54
2:	20130622	93.174.93.179	80	TCP	59580	58487	05:11:15	22:21:41
3:	20130622	213.186.60.63	80	TCP	58429	58429	00:15:41	21:42:28
4:	20130622	202.121.166.203	22	TCP	106621	53328	05:18:26	10:10:33
5:	20130622	218.207.176.125	80	TCP	53241	53241	21:16:09	21:56:07
1107159:	20130622	65.55.37.104	16766	TCP	2	1	12:31:06	12:31:12
1107160:	20130622	65.55.37.104	16765	TCP	1	1	00:45:24	00:45:24
1107161:	20130622	65.55.37.104	16761	TCP	3	1	09:47:49	09:48:39
1107162:	20130622	65.55.37.104	16759	TCP	2	1	03:29:51	03:30:37
1107163:	20130622	65.55.37.104	16721	TCP	1	1	20:29:24	20:29:24

Not quite "Big Data", but enough to play around

Number of Reports and Events per day

Date

Model Intuition: Proximity

- Assumptions to aggregate the data
- Correlation / proximity / similarity BY BEHAVIOUR
- "Bad Neighborhoods" concept:
 - Spamhaus x CyberBunker
 - Google Report (June 2013)
 - Moura 2013
- Group by Netblock
- Group by ASN (thanks, TC)

Model Intuition: Temporal Decay

- Even bad neighborhoods renovate:
 - Agents may change ISP, Botnets may be shut down
 - Paranoia can be ok, but not EVERYONE is out to get you
- As days pass, let's forget, bit by bit, who attacked
- A Half-Life decay function will do just fine

Model Intuition: Temporal Decay

Exponential Decay per Half-life

Rank

Days since last appearance

Model: Calculate Features

- Cluster your data: what behavior are you trying to predict?
- Create "Badness" Rank = lwRank (just because)
- Calculate normalized ranks by IP, Netblock (16, 24) and ASN
- Missing ASNs and Bogons (we still have those) handled separately, get higher ranks.

Model: Calculate Features

- We will have a rank calculation per day
 - Each "day-rank" will accumulate all the knowledge we gathered on that IP, Netblock and ASN to that day
- We NEED different days for the training data
- Each entry will have its date:
 - Use that "day-rank"
 - NO cheating
 - Survivorship bias issues!

How are we doing so far?

Training the Model

- YAY! We have a bunch of numbers per IP address!
 How can I use this?
- We get the latest blocked log files (SANS or not):
 - We have "badness" data on IP Addresses <u>features</u>
 - If they are blocked, they are "malicious" <u>label</u>
- Sounds familiar?
- Now, for each behavior to predict:
 - Create a dataset with "enough" observations:
 - ROT of 50k 60k because of empirical dimensionality.

Negative and Positive Observations

- We also require "nonmalicious" IPs!
- If we just feed the algorithms with one label, they will get lazy.
- CHEAP TRICK: Everything is "malicious"
- Gather "non-malicious" IP addresses from Alexa and Chromium Top 1m Sites.

SVM FTW!

- Use your favorite algorithm! YMMV.
- I chose Support Vector Machines (SVM):
 - Good for classification problems with numeric features
 - Not a lot of features, so it helps control overfitting, built in regularization in the model, usually robust
 - Also <u>awesome</u>: hyperplane separation on an unknown infinite dimension.

Jesse Johnson – shapeofdata.wordpress.com

No idea... Everyone copies this one

Results: Training Data

- <u>Cross-Validation</u>: method to test the data against itself
- On the training data itself, <u>85 to 95% accuracy</u>
- Accuracy = (things we got right) / (everything we had)
- Some behaviors are much more predictable than others:
 - Port 3389 is close to the 95%
 - Port 22 is close to the 85%
 - SANS has much more data on port 3389. Hmmm.....

Results: New Data

- And what about new data?
- With new data we know the labels, we find:
 - 80 85% true positive rate (sensitivity)
 - 85 90% true negative rate (specificity)
- This means that:
 - If the model says something is "bad", it is <u>5.3 to 8.5 times</u> <u>MORE LIKELY to be bad</u>.
- Think about this. Our statistical intuition is bad.
- Wouldn't you rather have your analysts look at these?

$$LR + = \frac{\Pr(T + |D+)}{\Pr(T + |D-)}$$

Final Remarks

- These and other algorithms are being developed in a personal project of mine: MLSec Project
- Sign up, send logs, receive reports generated by models!
 FREE! I need the data! Please help!;)
- Looking for contributors, ideas, skeptics to support project as well.
- Please visit <u>http://mlsecproject.org</u> or just e-mail me.

Thanks!

- Q&A?
- Don't forget your feedback forms!

Alexandre Pinto alexcp@mlsecproject.org @alexcpsec @MLSecProject

