
EDS: Exploitation Detection System

By Amr Thabet
Q-CERT

About The Author
v Amr Thabet (@Amr_Thabet)
v Malware Researcher at Q-CERT
v The Author of:

§  Security Research and Development
Framework (SRDF)

§  Pokas x86 Emulator
v Wrote a Malware Analysis Paper for

Stuxnet

Company Logo

Introduction
v Now the APT Attack become the major

threat
v Bypasses all defenses
v Standards and Policies doesn’t work
v Bypasses IDS, IPS, Firewalls .. etc

Company Logo

Introduction
v The Attacker uses:

§ Client-side attacks and exploits
§  Spear-phishing attacks

v Uses undetectable malwares
v Uses HTTP and HTTPs
v Attack the servers from the infected

clients

Company Logo

Introduction
v The Next Security Technology is the :

“Exploitation Detection Systems”
v EDS is only way to stop Attacks from

behind
v Stop Attacks from Client-Side
v Stop successful exploitation for a 0-day

Company Logo

Company Logo

Improvements in Defense

Security
Technology
Improvements

EDS

IDS

Firewall

Antivirus

Introduction
v The Talk today is about:

§  EDS as a concept and next technology
§  EDS: the new tool that I created
§  The Development of EDS
§  SRDF Framework (adv J)

v I will try to explain everything for who
don’t know about Exploits … etc

Company Logo

Company Logo

Contents

Development and Future work

Monitoring System

Mitigations in Depth

The Design of EDS

Motivation and Goals

Goals
v Stop Exploitation for new 0-days
v Works with Memory Corruption

Exploits
v Detect Compromised Processes
v Prevent and/or Alert of Exploited

Processes

Company Logo

Memory Corruption Vulnerabilities
v Simply write data in

places you are not
intended to write on it

v Like:
§  Pointers
§ Return addresses

v Change how the
application behave

v Check:
www.corelan.be

Company Logo

Antivirus vs EDS
v EDS is not signature based
v EDS doesn’t detect malware
v EDS main goal to stop exploitation
v EDS is memory based
v EDS searches for evidence of Memory

corruption and indication of
compromise

Company Logo

Previous Work
v Compile-Time Solutions:

§  Takes Long time to affect
§  Always there’s exceptions

v Current Run-time Solutions:
§ Only One Layer of Defense
§ On-Off Mitigations
§ No detection of this layer was bypassed or not
§  A fight between false positives and false

negatives

Company Logo

What’s New?
v Co-operative Mitigations
v Based on Scoring System
v Prevention and Alerting Infected

processes
v Additional layer with Monitoring

System

Company Logo

Design of EDS

Company Logo

Design of EDS
v Payload Detection:

§  Shellcode Detection
§ ROP Chain Detection

v Security Mitigations For Stack:
§ ROP Detection

v Security Mitigation For Heap:
§ Heap Overflow
§ Heap Spray
§ Use After Free

Company Logo

Design of EDS
v Scoring System:

§  Based On Payload Detection and Security
Mitigations

§  Scoring Based on Payload, Attack Vector and
The Process abnormal behavior

Company Logo

Design of EDS
v Monitoring System:

§  Searches for Evidence of Exploitation
§ Detect bypassed Mitigations
§  Alert the Administrators to Take Action
§  Looking at the previous EDS reports for this

process

Company Logo

Mitigation In Depth: Payload
v Increase the score of suspiciously
v Detect suspicious inputs and tries for

exploitation.
v Divided Into:

§  Shellcode Detection
§ ROP Chain Detection

Company Logo

What’s Shellcode?
v It is simply a portable native code
v Sent as a bunch of bytes in a user input
v Do a specific action when the

processor executes it
v The attacker modify the return address

to point to it.

Company Logo

What’s Shellcode?
v It gets its place in memory
v Then it gets the kernel32

DLL place in memory
v Get windows functions

(APIs) from it
v And then … ATTACK
v Check:
v http://www.codeproject.com/Articles/

325776/The-Art-of-Win32-Shellcoding

Company Logo

What’s Shellcode
v Some shellcodes shouldn’t have null

bytes (sent as string)
v Some are encrypted
v There’s a loop to decrypt it
v Some are in ascii
v Some doesn’t include loop but many

pushes (to be in ascii)

Company Logo

Shellcode Detection
v Goals:

§  Very fast shellcode detector
§  Very hard to bypass … min false negative
§  Low false positive

Company Logo

Shellcode Detector
v Static Shellcode Detector
v Divided into 3 phases:

§  Indication of Possible Shellcode (GetPC …
etc)

§  Filter by invalid or privileged Instructions
§  Filter by Flow Analysis

Company Logo

Indication of Possible Shellcode
v Search for Loops

§  Jump to previous

§ Call to previous (Call Delta)

§  Loop Instruction

Company Logo

Indication of Possible Shellcode
v High rate of pushes end with flow

redirection

v Search for fstenv followed with at least
5 valid instructions after it

Company Logo

Skip Invalid Instructions
v We skip all invalid instructions.
v We skip all privileged instructions like:

IN, OUT, INT, INTO, IRETD, WAIT,
LOCK, HLT … etc

v  Skip Instructions with unknown
Behavior like:
JP, AAM, AAD, AAA, DAA, SALC, XLAT, SAHF,
LAHF, LES, DES,

Company Logo

Flow Analysis
v Check on ESP Modifications through

loops
§  If there’s many pushes with no pops in loops

v Check on Compares and Jccs in th
code
§  Search for Jcc without compare or similar

before it.

v Check on % of Nulls and Null-Free
Company Logo

Shellcode Statistics

Company Logo

v Scan per page
v False Positives in range 4% Infected

Pages
v All of these samples are legitimate

File	 Type	 Total	 No	 of	 Pages	 Infected	 Pages	 Presentage	

Pcap	 381	 40	 2%	

Pcap	 11120	 543	 4%	

Wmv	 104444	 4463	 4%	

Shellcode Statistics
v It detects all Metasploit Shellcodes
v Detects all working shellcodes in

Shellstorm (win32 – ASLR Bypass)
v Detected Encoded Shellcodes by

metasploit Encoders
v Manual Evasion is possible

Company Logo

What’s ROP Chain
v Very small code in a

legitimate dll
v End with “ret” instruction
v Attackers uses a series

of it
v All of them together = a

working shellcode
v Used to bypass DEP

Company Logo

ROP Chain Detection
v It’s a very simple ROP Detection
v Search for Return with these criteria:

§  the address is inside an executable page in a
module

§  the return address not following a call
§  Followed by ret or equivalent instructions in

the next 16 bytes
§ Not Following series of (0xCC)

Company Logo

Stack Mitigations
v We detect ROP Attacks
v The Mitigation is named “Wrong

Module Switching”
v We detect SEH Overwrite
v We scan for Leaked ROP chains (which

not overwritten)

Company Logo

ROP Attack Vector
v ROP are used to bypass DEP
v They mostly ret to VirtualProtect API
v Make the shellcode’s memory

executable
v Or calls to another windows APIs

Company Logo

Wrong Module Switching
v Detect ROP Attacks
v Based on Stack Back-tracing

Company Logo

Wrong Module Switching
v Hooks in Kernel-Mode on win32
v Uses SSDT Hooking
v Hooking on WOW64 for win64
v Hook Specific APIs
v Hooks:

§  VirtualProtect and similar functions
§ CreateProcess and similar
§ Network and Socket APIs
§  And more

Company Logo

Wrong Module Switching
v Using Stack Backtracing to Return to The API

Caller
v Checks the API Call are:

§  Check The Call to this API or not
§  Check The Parameters
§  Check the next Call Stack if it calls to the function that

calls to the API
§  Check The SEH if it’s in the same module
§  Check if there’s null parameters
§  Near return address after the call
§  And more

v Gives a score to API call
Company Logo

Wrong Module Switching
v Check on Different Calls like:

§  Call dword ptr [<kernel32.API>]
§  Lea eax, <kernel32.API>
call eax

§  Call API
API:Jmp dword ptr [<kernel32.API>]

Company Logo

Wrong Module Switching
v Category Parameters based on:

§  CONST: push xxxxxxxxh
 OR lea eax, [xxxxxxxh]
 push eax

§  STACK: lea eax, [ebp +/- xxxxh]
 push eax

§  REGISTER: push exx
§  UNKNOWN: push any

Company Logo

Wrong Module Switching

Demo on ShellExecute

Company Logo

Demo: Hooking Firefox with EDS

Company Logo

Demo: Force Firefox to create
Process

Company Logo

Demo: The call stack to
ShellExecute

Company Logo

Demo: The ShellExecute Params

Company Logo

Demo: The Action Scoring

Company Logo

Demo: a Vulnerable application

Company Logo

Demo: Running and Hooking it

Company Logo

Demo: The Action Scoring and
Detection

Company Logo

SEH Mitigation
v SEH is a linked list of pointers to

functions handle an error

v Very basic Mitigation
v Saves the SEH Linked List
v Check if it ends differently

Company Logo

Mitigations For Heap
v We mitigate these attack vectors:

§ Heap Overflow
§ Heap Spray
§ Heap Use After Free

v Hooks GlobalAlloc and jemalloc
v Create a new Header for memory

allocations

Company Logo

New Header Design
v It’s Divided Into 2 Headers

Company Logo

Design of Buffer Header
v This is a Header in a separate Buffer
v It points to the buffer
v It get the Caller Module

and the allocation Time
v It checks for vtable inside

the buffer and Mark it
as Important

v It reset everything in ~ 2 secs

Company Logo

Overflow Mitigation
v It checks for:

§ Nulls: to stop the string overwrite
§ Cookie: to stop managed overwrite

v It’s used mainly against jemalloc

Company Logo

HeapSpray Mitigation
v It searches for Allocations:

§ Many Allocations from the same Module
§  Large Memory Usage
§  In very small time

v Take 2 random buffers
v Scan for shellcode and ROP chains

Company Logo

Use-After-Free Mitigation
v Scans for vtable inside buffers
v Delay the free for these buffers
v Wipe them with 0xBB
v Free them at the end of the slot ~ 2

secs
v Detect Attacks when access 0xBB in

Heap

Company Logo

Put All together
v It does 2 type of scanning:

§ Critical Scanning: when calls to an API to
check ROP Attack or detect HeapSpray .. etc

§  Periodical Scanning: That’s the monitoring
system

Company Logo

Scoring System
v It’s based on the Mitigation
v It stop the known Attacks and

terminate the Process
v Alert for suspicious Inputs
v Take Dump of the Process

Company Logo

Monitoring System
v It scans Periodically
v Checks for possible Attacks
v Like:

§ Check Executable Places in Stack
§ Check Executable Places in Memory Mapped

Files
§  Search for ROP Chains and Shellcode in

Stack and Heap
§ Check Threads running in place outside

memory
§  And many more

Company Logo

Future Work
v We are planning to create a central

Server
v Receives Alerts and warning
v Monitoring Exploitations on

client machine
v With a graphical

Dashboard

Company Logo

Future Work: Dashboard
v The Dashboard includes Suspicious

Processes in all Machines
v Includes the files loaded inside the

suspicious processes (PDF, DOC …
etc)

v Includes IPs of these processes
connect to (after review the Privacy
policy)

Company Logo

Future Work: Dashboard
v EDS will become your Memory and

Exploitation Monitor.
v Will correlate with your network tools
v Will be your defense inside the client
v More Intelligent than Antivirus
v Better Response

Company Logo

Dashboard: What you can Detect
v Using this Dashboard you can detect:

§  Suspicious PDF or Word File many people
opened it:
it could be an email sent to many people in
the company

Company Logo

Dashboard: What you can Detect
v Using this Dashboard you can detect:

§  In small time … IE for many employees
become suspicious with similar shellcode:

could be a suspicious URL visited by a
phishing mail

Company Logo

Dashboard: What you can Detect
v Using this Dashboard you can detect:

§  You can detect suspicious IPs did a scanning
over your network and now suspicious
processes connect to it

Company Logo

Development
v The EDS is based on SRDF
v “Security Research and Development

Framework”
v Created by Amr Thabet
v Includes 3 main contributors

Company Logo

SRDF
v development framework
v Support writing security tools
v Anti-Malware and Network Tools
v Mainly in windows and C++
v Now creating linux SRDF and

implementation on python

Company Logo

SRDF Features
v Parsers:

§  PE and ELF Parsers
§  PDF Parser
§  Andoid (APK or/and DEX) Parser

v Static Analysis:
§  Include wildcard like YARA
§  x86 Assembler and Disassembler
§  Android Delivk Java Disassembler

Company Logo

SRDF Features
v Dynamic Analysis:

§  Full Process Analyzer
§ Win32 Debugger
§  x86 Emulator for apps and shellcodes

v Behavior Analysis:
§  API Hooker
§  SSDT Hooker (for win32)
§  And others

Company Logo

SRDF Features
v Network Analysis

§  Packet Capturing using WinPcap
§  Pcap File Analyzer
§  Flow Analysis and Session Separation
§  Protocol Analysis: tcp, udp, icmp and arp
§  App Layer Analysis: http and dns
§  Very Object Oriented design
§  Very scalable

Company Logo

SRDF
v Very growing community

v I will present it in

v Become a part of this growing
community

Company Logo

SRDF
v Reach it at:

§ Website: www.security-framework.com
§  Source:

https://github.com/AmrThabet/winSRDF
§  Twitter: @winSRDF

v Join us

Company Logo

What we reach in EDS
v We developed the Mitigations

separately
v We tested the Shellcode Scanner on

real shellcodes
v Still testing on real world scenarios
v Join us and help us.

Company Logo

Reach Us
v Still there’s no website for EDS
v You can reach us at SRDF Website:

 www.security-framework.com
v And my Twitter: @Amr_Thabet
v Just mail me if you have any feedback

§  Amr.thabet[@#!*^]owasp.org

Company Logo

Conclusion
v EDS is the new security tool for this

Era
v The Last line to defend against APT

Attacks
v Still we are in the middle of the

Development
v SRDF is the main backbone for it
v Join Us

Company Logo

Big Thanks to
v Jonas Lekyygaurd
v Anwar Mohamed
v Corlan Team
v All Defcon Team
v Big thanks for YOU

Company Logo

