Key Decoding and Duplication Attacks for the Schlage Primus High-Security Lock

David Lawrence Eric Van Albert Robert Johnson

locks@mit.edu

DEF CON 21

August 3, 2013

Standard pin-tumbler locks

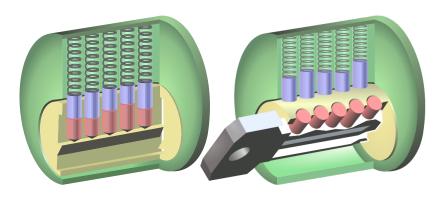


Photo credit: user pbroks13 on Wikimedia Commons. Licensed under GFDL or CC-BY-SA-3.0.

Vulnerabilities

- **1 Key duplication**: get copies made in any hardware store.
- 2 Manipulation: susceptible to picking, impressioning, etc.

The Schlage Primus

Based on a pin-tumbler lock, but with a second independent locking mechanism.

- Manipulation is possible but extremely difficult. Some people can pick these in under a minute. Most people cannot.
- We will focus on **key duplication** and the implications thereof.

Reverse-engineering the Primus

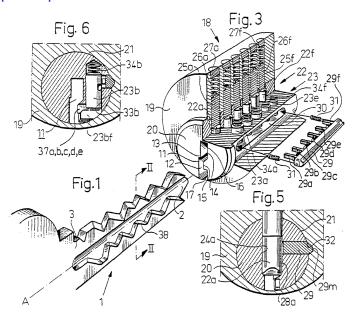
2 3D modeling Primus keys

Fabricating Primus keys

4 What it all means

Reverse-engineering the Primus

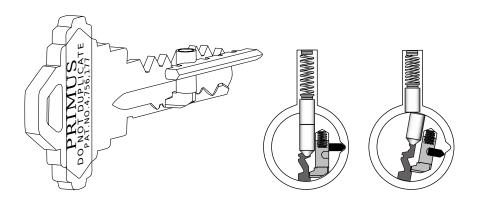
2 3D modeling Primus keys


Fabricating Primus keys

4 What it all means

Security through patents

Look up the patent...



Primus service manual

w3.securitytechnologies.com/IRSTDocs/Manual/108482.pdf (and many other online sources)

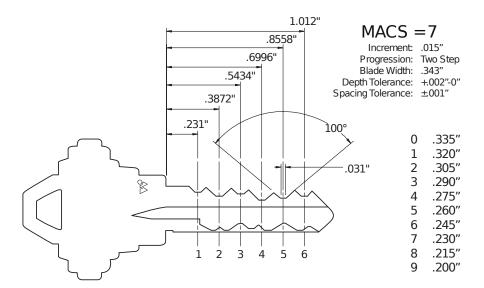
Sidebar operation

- Finger pins must be lifted to the correct height.
- Finger pins must be rotated to the correct angle.

Disassembly

Fill in any missing details by obtaining a lock and taking it apart.

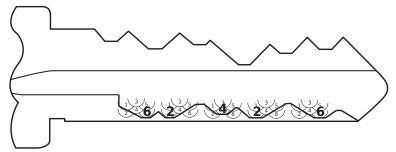
Photo credit: user datagram on lockwiki.com. Licensed under CC-BY-3.0.


Reverse-engineering the Primus

2 3D modeling Primus keys

Fabricating Primus keys

4 What it all means

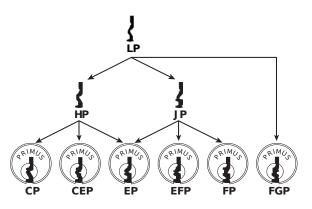

Top bitting specifications

Side bitting specifications

• Scan 10 keys on flatbed scanner, 1200 dpi, and extract parameters.

Index	Position	Height from bottom	Horizontal offset
1	Shallow left	0.048 inches	0.032 inches left
2	Deep left	0.024 inches	0.032 inches left
3	Shallow center	0.060 inches	None
4	Deep center	0.036 inches	None
5	Shallow right	0.048 inches	0.032 inches right
6	Deep right	0.024 inches	0.032 inches right

Modeling the side bitting

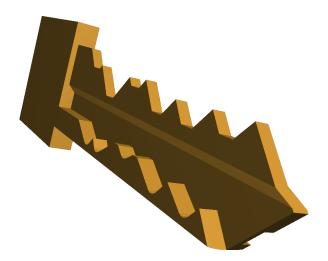


Design requirements

- Minimum slope: finger pin must settle to the bottom of its valley.
- Maximum slope: key must go in and out smoothly.
- Radiused bottom: matches the radius of a finger pin.

Key cross-section

- One shape fits in all Primus locks.
- Dictated by physical constraints.


Modeling the key in OpenSCAD

- Programming language that compiles to 3D models.
- First use to model keys was by Nirav Patel in 2011.
- Full implementation of Primus key is a few hundred lines of code.

```
// top_code is a list of 6 integers.
// side_code is a list of 5 integers.
// If control = true, a LFIC removal key will be created.
module key(top_code, side_code, control = false) {
  bow();
  difference() {
    envelope();
    bitting(top_code, control);
    sidebar(side_code);
```

The result

key([4,9,5,8,8,7], [6,2,3,6,6]);

Reverse-engineering the Primus

- 2 3D modeling Primus keys
- Fabricating Primus keys

4 What it all means

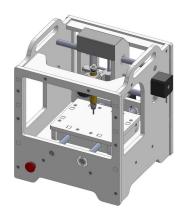
Hand machining

Materials needed:

- Hardware store key blank (\$1)
- Dremel-type rotary tool (\$80)
- Calipers (\$20)

Cut, measure, and repeat ad nauseum.

Rob can crank one out in less than an hour.



Computer-controlled milling

- This is what the Schlage factory does.
- High setup cost (hundreds of dollars): not practical for outsourced one-off jobs.
- Keep an eye on low-cost precision micromills.

3D printing

This is the game changing technology.

(From bottom to top, picture shows low resolution plastic, high resolution plastic, and titanium.)

3D printing results

- shapeways.com "frosted ultra detail"
 - \$5 setup fee plus \$2 per key.
 - Very good precision.
 - Insufficient strength to retract a latch.
- 2 shapeways.com "white, strong, and flexible"
 - ▶ \$2 setup fee plus \$1 per key.
 - Acceptable precision (operation is less smooth, but it works).
 - Strong enough to operate most locks.
- 3 i.materialise.com "titanium"
 - \$150 per key (ouch!).
 - Very good precision.
 - Very good strength (similar to that of a brass key).

Expect to see prices decrease even more in the near future.

Reverse-engineering the Primus

2 3D modeling Primus keys

Fabricating Primus keys

4 What it all means

Primus-specific results

- Key decoding is easy.
- Key duplication is easy.
- Master key extrapolation is easy.
- Keyless manipulation is still hard.

Our recommendations

- Primus should not be used for high-security applications.
- Existing Primus installations should reevaluate their security needs.

General implications

- This is an industry-wide problem.
- Key duplication will become much more accessible.
- Physical security will depend on information security.
- Patent protection will become less useful.

Figure: A 3D printed car key, by Ryan Weaving, and a 3D printed disc detainer key, by Nirav Patel.

Audience projects

- Contribute 3D models of other keys. (Medeco, anyone?)
- Integrate 3D models with existing image-to-key decoding software.
- Start a website for the exchange of 3D models of interesting keys.

Figure: New York City "master keys". What will happen once 3D models of these become available?

Questions?

