Who we are

bughardy

 (aka Matteo Beccaro)
 bughardy@cryptolab.net

Italian student with passion of IT, networking and pentesting. In 2013 ended his studies in high school and apply for Politecnico of Turin at Computer Engineering. • Eagle1753

(aka Matteo Collura)

eagle1753@onenetbeyond.org

Italian student, applied for Politecnico of Turin, Electronic Engineering. Has a great passion for Physics. He is studying with bughardy on WiFi networks and security. Loves to solve challenges.

History of NFC hacks

- 2008 NFC MIFARE CLASSIC exploit, further in following years.
- 2011 first hack of NFC ULTRALIGHT transport system by U.S. Researchers using the RESET ATTACK
- 2013 a new hack of NFC ULTRALIGHT transport system made by us. We called it LOCK ATTACK.

What is MIFARE chip?

RFID chip designed to work at 13.56MHz.There are millions of MIFARE chip cards worldwide and they belong to several variants:

- · MIFARE CLASSIC
- · MIFARE ULTRALIGHT
- · MIFARE ULTRALIGHT C
- · MIFARE DESFIRE
- · etc

More details of: MIFARE CLASSIC vulnerabilities

- Security through obscurity is not security; algorithm has been reversed.
- By eavesdropping the communication an attacker might recover keys in few minutes.
- Default keys let an attacker recover all the other keys in few seconds without the need of eavesdropping any communication.

More details of: MIFARE ULTRALIGHT vulnerabilities

- Do not have encryption to keep them low cost
- Often transport companies use a bad implementation
- They often don't use OTP data to store rides but instead they do on a r/w memory: DATA sector.
- That is the RESET ATTACK

Yes, but what is MIFARE ULTRALIGHT?

How is it composed?

Page Address	Byte number				
Decimal	Hex	0	1	2	3
0	0x00		UID		
1	0x01	UID			
2	0x02	UID	INTERNAL	LOCK BYTE	LOCK BYTE
3	0x03	OTP	OTP	OTP	OTP
4 to 15	0x04 to 0x0F		DATA	Ą	

What is UID?

- 7 bytes serial number
- 2 check bytes obtained by XORing the previous bytes in this way:

1st byte: CT \oplus SN0 \oplus SN1 \oplus SN2 2nd byte: SN3 \oplus SN4 \oplus SN5 \oplus SN6

• Programmed by manufacturer, so they're read only

What is OTP?

- Only security function in MIFARE
 ULTRALIGHT tickets
- 4 bytes, all 00 at first (by default)
- OR operation prevents from turning a bit from 1 to 0 again
- Used for storing rides (just need to turn a bit from 0 into 1). The stamping machine checks the number of "0" left.

What is LOCK sector?

• 2 bytes

L - 7	L - 6	L - 5	L - 4	L - OTP	BL – 10 to 15	BL – 4 to 9	BL – OTP
L – 15	L-14	L-13	L – 12	L-11	L-10	L – 9	L-8

- Each bit can turn 1 page (4 bytes) into readonly mode
- The last 3 bits of first lock byte freeze the bits of the lock bytes themselves

What is DATA sector?

• Biggest sector, 48 bytes

• It stores details like time (of last stamp), date, station ID, etc

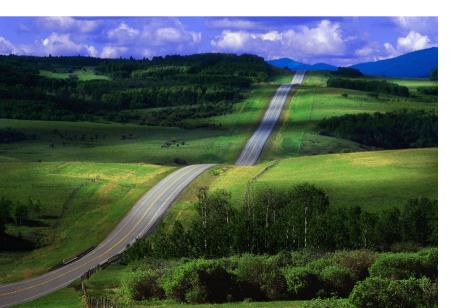
• In the reset attack, it is used to store the number of rides left.

Regarding DATA sector

• Working still in progress.

• Decoding how and which data are encoded to the ticket.

• We will provide dumps and info (in the Q&A session) if you would like to help us.


The history of an hack

- First tests, without knowing how OTP was working.
- OTP contains the number of rides left!!
- Attempt to write something over OTP.

There is still a long way

- "One the roa.. Er.. On the bus" test!
- Stamping more tickets one after the other and looking and comparing their dumps
- Empiric results about how data is stored on tickets

0000000	0000	0001	0001	1010	0010	0001	0004	0128
0000010	0000	0016	0000	0028	0000	0010	0000	0020
0000020	0000	0001	0004	0000	0000	0000	0000	0000
0000030	0000	0000	0000	0010	0000	0000	0000	0204
0000040	0004	8384	0084	c7c8	00c8	4748	0048	e8e9
0000050	00e9	6a69	0069	a8a9	00a9	2828	0028	fdfc
0000060	00fc	1819	0019	9898	0098	d9d8	00d8	5857
0000070	0057	7b7a	007a	bab9	00b9	3a3c	003c	8888
0000080	8888	8888	8888	8888	288e	be88	8888	8888
0000090	3b83	5788	8888	8888	7667	778e	8828	8888
00000a0	d61f	7abd	8818	8888	467c	585f	8814	8188
00000b0	8b06	e8f7	88aa	8388	8b3b	88f3	88bd	e988
00000c0	8a18	880c	e841	c988	b328	6871	688e	958b
00000d0	a948	5862	5884	7e81	3788	lab4	5a84	Seec
00000e0	3d86	dcb8	5cbb	8888	8888	8888	8888	8888
00000 f 0	8888	8888	8888	8888	8888	8888	8888	0000
0000100	0000	0000	0000	0000	0000	0000	0000	0000
300								
0000130	0000	0000	0000	0000	0000	0000	0000	
000013e								

"On the road" tests..

• Some empirical results in DATA sector decoding:

BYTES	DESCRIPTION	EXAMPLE
0-24 bytes	Locked DATA	01 04 00 00 02 01 02 BE 40 05 AF 00 00 AE 10 A0 61 03 1C 1C B2 2B 61 8E
25-28	Stamping progressive number	43 3B (7B 00)
29-32	Validator ID (guessed) / or Ticket type	04 F8 00 00
33-36	Stamping progressive numer	43 3B (7B 00)
37-38	Still not guessed	00 3B 00 04
39-40	Ticket type (guessed) / or data	F8 AE
41-48	Time data (guessed)	10 7B B3 02 E6 56

Seize the day

- Assume that you know where the time (of the last stamp) is stored and how
- Use a NFC phone / NFC reader to change that field (it is in the data field so there are no problems)
- It isn't so reliable and now we aren't able to deal with this.

Mission Completed

- Preventing the machine to write the number of rides left would turn the ticket into an unlimited one.
- The answer is: LOCK BYTES

The LOCK ATTACK: Why?

- Locking the OTP sector we prevent the stamping machine from removing rides stored on our ticket.
- Each time we stamp the ticket the validator checks if we have rides left
- If so it writes on DATA sector data time, etc and tries, without success, to turn bit from 0 to 1 in OTP sector.
- However...

Ops...

Yes, it is not okay to have always 5 rides on a 5 rides-ticket...

LOL

How to fix it?

- LOCK ATTACK would be easy to be fixed.
 - Firmware update: check whether OTP sector is locked or not, if so, just refuse to validate the ticket.
 - Firmware update: try to unlock the sector, but only if block bits are not enabled.
- TIME ATTACK isn't really easy to be fixed.
 - Communication between validator and ticket is not encrypted: easy to be sniffed.
 - Solution: Implementing an encrypted communication

Future works...

We are actually working on:

- Rewrite the tool in C/C++ without using external tools
- Decoding DATA sector: dumps and infos are available in Q&A section to anyone who would like to help us.
- NFC-enabled phone or a proxymark for further studying.

Questions?