
Evolving Exploits
through Genetic

Algorithms
By soen

Who am I
v  CTF Player

v  Programmer

v  Virus / Worm Aficionado

v  Computer Scientist

v  Penetration Tester in daylight

Domain Constraints
v  What we will cover

v  SQL injection (MySQL, SQL, MSSQL, Oracle)

v  Command injection (Bash, CMD, PHP, Python)

v  Attack surface is HTTP / HTTPS POST and GET
parameters

v  What we will not cover

v  Everything else

Exploiting Web
Applications

v  Attack problems

v  Driven by customer

v  Small scope

v  Limited time

v  Report driven

v  Attack methodology

Exploiting Web
Applications

v  Attack problems

v  Attack methodology

v  Run as many scanning tools as possible

v  Manually poke at suspicious areas until a vulnerability
is found

v  Write an exploit

Exploiting Web
Applications

v  Attack problems

v  Attack methodology

v  Problems with this

v  Manual code coverage is inherently small

v  Manual inspection of suspicious areas is time-costly

v  Manual exploit development takes time

Existing tools for exploit
discovery / development

v  Nessus / nmap / blind elephant / other scanning tools don’t
really count unless there is a signature developed for a specific
vulnerability / finding.

v  Acunetix

v  Burp

v  ZAP

v  sqlmap

Foundational problems with
current scanning techniques

v  Systemic signature problem

v  Anti-Virus == Web Scanners

v  Solution: Evolve unique exploits for web applications

v  Web Application Firewall blocks ‘or 1=1 -- ?

v  Evolve from

v  ‘or 1=1 --

v  To:

v  Aso1239^;’or 2=1 or 1=3 or 1=1 --asdl1ojcud//\

Evolutionary Algorithms
In English:

1.  Create a large number of creatures

2.  While solution/goal != found:

1.  Score all of the creatures’ performance using a fitness
function

2.  Kill the weak performing

3.  Breed the strong performing

4.  Mutate creatures randomly

3.  Display the creature that solved the solution

Exploit Evolution
1.  Create a large number of strings

2.  While exploit != successful:

1.  Send the string as parameter value (I.E. POST, GET, etc.)

2.  Use the response from the server to determine the score

1.  +Error Pages (more if the string was reflected)

2.  +Blank / delayed responses

3.  +For objectives displayed (passwords displayed, sensitive DB
information, etc.)

3.  Delete the weak performing strings

4.  Breed the strong performing strings

5.  Mutate the strong performing strings

3.  Display the string that successfully exploits the app

Fitness Function
v  This is the performance /score of how well a creature

performs

v  Creatures that score well will live to breed

v  Creatures that score poorly will be culled

v  Fitness in this context is the following:

v  Does the creature cause sensitive information to be
displayed?

v  Does the creature cause an error (and if so, what type?)

v  Is the creature reflected? (XSS…)

v  Is other information displayed?

Breeding Strings
v  Pairs of strings are bred using genome cross-over

 String A String B

 Child A Child B

 Mutated Child A Mutated Child B

v  The amount of children and parents varies on implementation.

v  The amount of children depends on implementation

v  Parents are kept alive depending on implementation

Next
Iteration

Mutating Strings
v  Pseudo code:

v  Mutation rate is greater than 0 and less than 1.0

v  Select an amount of string items to mutate given the
length of the string (0 -> len(string)) * mutation rate

v  For each mutation, replace/add/remove a random
string item with a random character

v  Example:

v  Pre-mutation String: ABCD

v  Post-mutated String: XACF

v  (Prepended X, B deleted, and D mutated to F)

Population Dynamics
v  It is critical to choose a mutation rate that will allow

for sufficient diversity in the pool of creatures, but at
the same time allow a solution to be efficiently
reached.

v  Cull rate / string death rate must be high enough to
maintain the population, but low enough to not
drastically reduce it. (E.G. For 300% growth rate of
breeding the top 33%, cull 67% of the population)

Tool Comparison
v  Command Injection

v  Statistics

CMD	
 injec*on	

Vulnerability	

Found?	

Exploit	

Developed	

Auto	
 WAF	

bypass	

Time	
 for	
 AAack	

(seconds)	
 Requests	

Acune*x	
 Yes	
 No	
 No	
 20	
 1854	

Burp	
 Yes	
 No	
 Yes	
 926	
 38297	

ZAP	
 Yes	
 No	
 No	
 118	
 264	

SQLMAP	
 N/A	
 N/A	
 N/A	
 N/A	

Forced	

Evolu*on	
 Yes	
 Yes	
 Yes	
 246	
 15489	

Tool Comparison
v  Command Injection

v  Requests sent to server:

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Acunetix Burp ZAP SQLMAP Forced
Evolution

Tool Comparison
v  Command Injection

v  Time to exploit (seconds)

0

100

200

300

400

500

600

700

800

900

1000

Acunetix Burp ZAP SQLMAP Forced
Evolution

Tool Comparison
v  SQL Injection

v  Statistics

SQLi	

Vulnerability	

Found?	

Exploit	

Developed	

Auto	
 WAF	

bypass	
 Time	
 for	
 AAack	
 Requests	

Acune*x	
 Yes	
 Yes	
 No	
 53	
 2685	

Burp	
 Yes	
 Yes	
 Yes	
 1101	
 46516	

ZAP	
 Yes	
 No	
 No	
 157	
 315	

SQLMAP	
 Yes	
 Yes	
 Yes	
 15	
 166	

Forced	

Evolu*on	
 Yes	
 Yes	
 Yes	
 17	
 5996	

Tool Comparison
v  SQL Injection

v  Requests sent to server

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Acunetix Burp ZAP SQLMAP Forced
Evolution

Tool Comparison
v  SQL Injection

v  Time to exploit (seconds)

0

200

400

600

800

1000

1200

Acunetix Burp ZAP SQLMAP Forced
Evolution

Pro’s and Con’s
v  Con’s for Exploit Evolution

v  Very noisy attacks

v  Potential to inadvertently destroy the database / OS

v  Slow process to develop and test exploits

v  Sub-optimal to source code analysis

Pro’s and Con’s
v  Pro’s for Exploit Evolution

v  Cheap in CPU and human time

v  More complete code coverage than other black-box
approaches

v  Exploit breeding is the future, upgrades to the current
approach will improve efficiency but the code right now
will break web apps in the future.

v  Automatic exploit development – Exploits genetically
bred to tailor to a specific web app

v  Emergent exploit discovery – New exploit
methodologies and techniques will emerge from a
system like this.

Demo

Contact
v  Download Forced Evolution

v  github.com/soen-vanned/forced-evolution

v  soen.vanned@gmail.com

v  @soen_vanned

v  http://0xSOEN.blogspot.com

v  1KVh6pWfi4tiBPxy9jQCxtcMYnpraWkzmv

References
v  Fred Cohen (Computer Viruses – Theory and

Experiments - 1984)

v  Dr. Mark Ludwig (The little & giant black book of
computer viruses, Computer Viruses, Artificial Life
and Evolution)

v  Herm1t’s VX Heaven(http://vxheaven.org/)

v  Artificial Intelligence: A Modern Approach (3rd
Edition, Stuart Russell & Peter Norvig)

