

Raspberry MoCA: an Automated Penetration
Platform

Andrew Hunt
Volgeneau School of Engineering, George Mason University

Fairfax, VA
ahunt5@masonlive.gmu.edu

Abstract— Media Over Coaxial Alliance (MoCA) is a protocol
encapsulating Ethernet protocols over coaxial cabling common to
interior television wiring. Previous work discussed the
vulnerabilities presented by common implementations of the
protocol. In this paper, these vulnerabilities are realized with the
development of Raspberry MoCA, an embedded device that
provides a drop-in, automated exploitation kit which can be
installed outside the target structure in less than five minutes,
providing remote access and complete control over the
connecting LAN.

I. INTRODUCTION
Prior work on Media over Coaxial Alliance (MoCA)

protocol analysis revealed a major vulnerability in common
implementations [1]. The logical separation between the local
area network (LAN) and wide area network (WAN) is
defeated by the use of a single physical cable to transmit both
signals. Most operational service providers (OSPs), such as
Verizon and Cox, present the termination point of their
services to the optical network terminator (ONT) attached to
the exterior of the serviced building for easy maintenance.
This unit converts the signal to a coaxial cable, using the
MoCA protocol to encapsulate the Ethernet packets to a
receiving MoCA bridge embedded in the provider’s provided
network router within the building.

The router binds both MoCA LAN services for video
devices and MoCA WAN services from the OSP to the same
cable wiring used within the structure. It also bridges the
MoCA LAN to the other LAN networks – wireless and
Ethernet devices. Because the WAN signal runs on the cable,
it is necessary to run this coaxial cable outside to the ONT.
When this occurs, the LAN signal is also exposed, as depicted
in Figure 1. This presents a physical attack vector to any
attacker willing to disconnect the ONT and insert a coaxial
splitter to an attached MoCA-to-Ethernet bridge, and any
Ethernet device.

Building on the evidence presented in the prior work, an
exploitation platform was built on an embedded processing
system. The developed platform includes automated enabling
of remote connection from the Internet to the newly installed
LAN device, as well as demonstration tools to provide to
safely demonstrate the ease of which the attacker can attach,
enumerate, profile, and exploit the target LAN.

II. PLATFORM DESIGN
Several elements were considered in the design of a

platform to engage in extra-domicile attack. First, attaching to

the MoCA network outside the domicile requires a power
source. The attacker cannot assume that the coaxial splitter or
ONT will be conveniently located to a power source. Tapping
the electrical utility stack requires specialized knowledge, risk
of electrocution, and most importantly time to conduct. The
longer the attacker is around the property, the more likely they
are to be detected. Therefore, the attacker must assume that
they will provide power to the device. This can be achieved
with an inexpensive universal power supply (UPS) system,
widely available in many stores. An APC BackUPS 350 ES
was selected for its wide availability, available management
software, and low cost [2,3]. With 200 volt-amps (VA) of
stored power, a typical 3.5VA embedded unit would last about
60 hours.

MoCA Networks
Ground

FIOS

Fiber Optic Cable

Coaxial
Cable

ActionTec
Router

Coaxial
Cable

ONT

2GHz
3-way
Coaxial
SplitterSTB

DVR

“Home Net” Bridge:
MoCA LAN
Ethernet LAN
Wireless LAN

Ho
us

e
Ex

te
rio

r W
al

l

Promulgation of WAN network

Promulgation of LAN networks

Figure 1: Promulgation of LAN and WAN over MoCA
The supply of power from a UPS is limited by the watts

drawn from the battery over time against its storage capacity.
This illustrates the importance of the second consideration in
design, the device power footprint. The attack unit would
draw minimal power to maximize the available time to attack.
This would allow the attacker to plant the device, then engage
in other routine activities or travel before connecting to the
unit. This allows the attacker to maintain a less obvious
persona and reduce the risk of immediate detection.

Low-power devices also present a smaller physical
footprint, the third major consideration. Smaller devices are
easier to obscure beneath or behind utility meters or
decorative plants frequently employed to hide unsightly
wiring installations.

Embedded devices come in a variety of sizes and
capabilities. However, almost all are based on an ARM
processing architecture due to its efficient assembly
instruction set and low power requirements [4]. Since no off-
the-shelf ARM units include a MoCA coaxial adapter with the
board, an Ethernet-capable unit would need to be used with a
Moca-to-Ethernet bridge. Our existing Netgear MCAB1001
and related cabling was employed for this purpose, slightly
increasing the power load on the UPS.

Alleviating the need to support the MoCA chipset directly
opened up the available operating systems to choose from.
However, the recently released Kali Linux succeeds
BackTrack as the standard high-quality, supported distribution
platform with a tested suite of tools for an attacker to employ
[5]. Kali also provides ARM versions of their distribution,
enabling its use to bootstrap this development. Using a
standard toolkit is important to an attacker as it reduces the
number of observables that might reveal them should the
device be discovered and analysed, the third design
consideration. Upon discovery, anyone would be able to tell
the unit was an attack device. However, there would be far
fewer artifacts to reveal the identity of the attacker on a
standard build than on a customized build unique to the
choices of the builder. The attacker has some assurance that
without external sources of information, the discovery of the
unit would reveal nothing more than the owner was attacked.

Table 1: Raspberry MoCA Platform Components

Vendor Model Description
APC BackUPS 350

ES
200 VA Universal
Power Supply

Netgear MCAB1001 MoCA Coax-to-
Ethernet Adapter

RCA DH24SPR 2-way 5-2400 MHz
coaxial splitter

RCA VH606N 2x Digital RG-6
coaxial cables

Element14 Raspberry Pi
Model B R2

Embedded ARM board
w/ Ethernet

Transcend TS8GSDHC10E Transcend 8 GB Class
10 SDHC Flash
Memory Card

 Raspberry Pi
board case

Motorola 5V micro-USB
phone charger

Belkin Cat-5e patch
cable

Connect the embedded
device to the MoCA
adapter

The final consideration was performing the development on

a standard, widely available board at minimal cost.

Element14’s Raspberry Pi was selected as it is an inexpensive
development ARM platform that is directly supported by Kali
Linux. The unit also has a wide community of support
providing accessories to weatherize, power, and protect the
device with only a small investment. Providing a unit that the
attacker does not mind losing the cost of enables the
aggressive deployment of the units, commoditizing the
attacker’s costs and increasing the odds of a successful
engagement. Table 1 shows the final list of components used
to create the Raspberry MoCA Platform.

With the materials assembled, Kali Linux was downloaded
and flashed to the SD card. A USB keyboard and video cable,
whether component or HDMI, and display device were
required to complete the initial build. Once running,
rageweb’s disk expansion procedure was employed to expand
the Kali installation to the entire available disk space on the
SD card, a 60% gain [6]. With available space, additional
tools could now be loaded. However, these needed to be
selective as not to overwhelm the device’s performance
capabilities. First the LAN environment needed to be assessed
to determine what services would be needed to achieve remote
accessibility to the device, enumeration of the network, and
eventual subversion of the LAN.

III. ASSESSING THE MOCA LAN
The MoCA LAN is provided by the MoCA root node,

typically located on the OSP’s provided network router. A
Verizon Actiontec MI424WR router was used to assess the
capabilities of a typical MoCA router. This device was found
to support Universal Plug-n-Play (UPnP), a technology that
allows for the automated discovery of devices and services
within a broadcast domain [7,8]. UPnP typically operates over
UDP port 1900, providing and receiving broadcast
information about and interpreting commands from other
devices [9]. UPnP supports many protocols, including the
Simple Service Discovery Protocol (SSDP) and Digital
Network Living Alliance (DLNA), that support intra-LAN
service establishment [10-16].

UPnP-Inspector and Miranda were used to assess the UPnP
services active upon the network [17,18]. Both are Python-
based toolkits that can actively probe or passively monitor the
UPnP broadcast space to enumerate discovered machines and
services offered. UPnP-Inspector also offers the ability to
graphically browse and query specific environment settings
provided by discovered devices [19]. While many devices
provided information about the services they provided, it was
determined that the focus of this effort would be on the
gateway and the establishment of access, leaving the
enumeration of other attached SSDP devices as an exercise for
the attacker using tools like GUPnP, Rygel, Brisa, and
Coherence [20-23]. This decision also reduced the footprint
on the embedded device from these heavy, GUI-based
programs. The gateway merely provided an interface via the
Internet Gateway Device (IGD) protocol.

IGD is essentially a command wrapper to forward ports
through the firewall at the behest of requesting devices [24].
However, the assumption of IGD implementations is that

every device on the LAN side of the firewall is trusted [25].
With no validation of requests, the firewall will open any
arbitrary port and forward it to an internal device without
authentication [26]. This makes the LAN vulnerable to
devices that make illegitimate requests to open or close ports
that affect other devices, client-side attacks that inject UPnP
packets to the network, or nodes added to the network with
malicious intent [27]. All nodes on the LAN are trusted nodes.

IV. ENABLING REMOTE ACCESS
With the discovery of the IGD protocol in play on the

router, Kali was assessed for its ability to support the crafting
of the UPnP IGD command to forward a port to the Raspberry
MoCA’s running SSH session. This was achievable via
Miranda, but it was a multi-step manual process to achieve.
Another tool, MiniUPnP was acquired and found to be the
smallest, most efficient UPnP tool encountered [28]. Like
most Unix tools, MiniUPnP was designed to be feature
specific and fast. Having the ability to be called from the
command line with the necessary arguments for port
redirection made MiniUPnP an excellent tool for scripting the
port forwarding procedure.

Table 2: rc.local code to establish port forwarding and
reporting through a UPnP firewall

#!/bin/sh -e

rc.local

sleep 120;
upnpc -a `ip addr | fgrep "inet " \
| fgrep -v "host lo" | awk '{print $2}' \
| awk -F\/ '{print $1}'` 22 22 tcp \
| tee /tmp/report | mailx -s `ip addr \
| fgrep "inet " | fgrep -v "host lo" \
| awk '{print $2}' \
| awk -F\/ '{print $1}'`.report

surreptitiously.delicious@gmail.com

exit 0

The short summary of the changes returned also provided

the necessary information about the external IP address of the
firewall, the port forwarded, and the internal IP address
forwarded to that the attacker needs to connect to the
Raspberry MoCA device. This was collected and codified into
the rc.local script to execute, establish forwarding, and report
the pertinent information to the attacker’s email address at
power-on, as depicted in Table 2.

Email was chosen as the delivery method for the
establishment data to employ several advantages. Free email
accounts are readily available and are difficult to attribute.
Email constitutes a large amount of legitimate traffic to hide
within, reducing the likely visibility of a small message. The
protocol also transmits asynchronously, having many
available tools to ensure delivery of the important data should
there be a disruption in service, to ensure delivery of this
critical message. While the chosen method sends the data in
the clear, other methods, such as Google or Yahoo’s IMAP(S)

services could be employed to provide more reliable,
encrypted channels that blend into common LAN device, e.g.
smartphone, communication streams [29].

V. EXPLOITING THE MOCA NETWORK
With remote access to the LAN, the attacker has the

advantage in assessing and choosing targets. With a limited
time window to operate before the platform exhausts its stored
power, the attacker would likely want to establish a more
permanent foothold on one of the other network devices.
Ettercap is a packet-spoofing and manipulation tool that is
provided with the Kali distribution [30,31]. The tool provides
a modular framework from which to commit a variety of
network routing and addressing attacks. Of these, Address
Resolution Protocol (ARP) spoofing provides the capability to
redirect the entire local broadcast domain efficiently [32-34].
Utilizing the ARP man-in-the-middle (MITM) module,
Ettercap enables the attacker to direct all non-gateway device
traffic to the Raspberry MoCA unit. The tool includes a native
forwarding capability, which passes the packets through its
filters, then out to the gateway. The same works in reverse,
creating a bi-directional packet capture and manipulation
capability for the attacker.

With access to LAN devices’ traffic, the attacker can
profile the devices specifically, gaining detailed knowledge
about device versions and services that can be exploited. The
attacker may employ Metasploit for a direct attack upon a
discovered vulnerability [35]. They may instead choose to use
the BeEF framework to manipulate web traffic bound for a
client device to inject redirects or exploitation code [36].
Karmetasploit is an integration of the Metasploit Framework
and Karmeta, a tool to poison software upgrade requests for
many common programs, enabling the attacker to silently
corrupt network nodes with no user interaction [37-39].

With the establishment of alternative backchannels, the
attacker would no longer need the Raspberry MoCA for
primary use. They could retrieve it with a few minutes effort
to disconnect the coaxial cable and charge it for a future
engagement. Should the attacker lose access to the target, they
only need to redeploy the Raspberry MoCA Platform to regain
control.

VI. DEMONSTRATION
The primary goal of this project was to provide a finished

penetration platform that could be used as a training tool to
espouse knowledge of the vulnerability of the MoCA protocol
as commonly deployed. This would allow for demonstration
of the aforementioned subversion techniques, potentially on
live networks, in a non-impactful, public, and open way.
Security researcher Joshua Wright presented his work on a
similar distribution called “I Love My Neighbors,” which
performed traffic manipulation upon an open wireless
honeypot to demonstrate to non-technical users the dangers of
using unprotected open wireless networks [40]. The extent of
those manipulations were simple, obvious, and many times
humorous image modifications or web page redirections.

Figure 2: Manipulated image demonstrates the nascent

capability of Raspberry MoCA

To enable this on the Raspberry MoCA, the squid

configuration and URL rewriting scripts were acquired from
Wright’s provided honeypot system image. Wright’s service
configuration script was also modified heavily to fit the
unified forwarding environment of the single-homed device.
With the establishment of iptables port redirection the unit
could receive and manipulate web traffic explicitly proxied to
it [41]. Adding an Ettercap command to establish ARP MITM
redirection for the entire LAN ensured that all hosts to be
subverted, producing obvious yet innocuous picture
manipulations, as seen in Figure 2.

VII. RESULTS
Raspberry MoCA successfully redirects the entire MoCA

LAN segment and its bridged wireless and Ethernet segments
to the attacking device. Unwitting devices have their web
traffic passed through the transparent Squid proxy and the
images manipulated with the URL rewrite function [42].

The single-core ARM11 processor of the Raspberry Pi base
drags noticeably when performing image manipulation as
configured by the original scripts. This improved when the
number of available processes was reduced from 15 Squid
url_rewrites to five and 25 Apache processes to five. This
reduced the memory footprint and freed up some of the
interrupt contention of the processor.

Redirection of traffic via Ettercap’s ARP MITM module
operated flawlessly. The device was capable of managing the
ARP poisons for targeted and LAN-wide subversions. Filters
were successfully applied to test packet data manipulation of
the word ‘dog’ to ‘cat’. This demonstrates that the simple
insertion of an iframe or javascript redirect to malicious code
into a target’s web stream would not provide a noticeable
latency to the user.

VIII. MITIGATIONS
As mentioned in prior work, monitoring of valid ARP

announcements, MoCA and DHCP rogue nodes would
provide indicators of this attack [1]. However, most home
users have neither the knowledge or capability to employ
these defences or monitor them effectively. Further sensing
strategies that may have detected this attack include the
creation of a monitoring script to dump the router IGD
forwarding state and compare it for changes. These will
happen from time to time, but with a log of the activity they
can later be analysed or profiled to alert on suspicious
mappings to known sensitive ports.

Another strategy would be to test the router’s firewall
implementation regardless of its reporting. An host external to
the firewall would be needed to scan the external facing
interface for open ports. This tool should report on
unauthorized or unknown openings.

The last mitigation strategy acquiesces to the notion that the
MoCA LAN is not defendable as deployed. However, its risk
to the greater network can be reduced through the use of a
third-party firewall. The ONT must first be configured to use
an Ethernet connection to bridge the connection of the
building to the OSP instead of MoCA WAN. However, with
this accommodation, the ActionTec router and its untrustable
MoCA LAN can be isolated to an untrusted network zone on
the independent firewall. With other more trusted networks
connected to other zones and traffic between the networks
denied unless explicitly defined, the impact of a MoCA LAN
subversion can be limited.

IX. CONCLUSIONS
The Raspberry MoCA Platform provides an effective

automated penetration kit at a cost minimal enough to
consider disposable. With the integration of a transparent
proxy server, it also serves as an affordable education vehicle
to demonstrate the threat to MoCA networks. While the
manipulation of large files at layer 7 proved to be a drag on
performance for this single-core, low-power ARM processor,
traffic manipulation and injection were accomplished with
ease.

REFERENCES
[1] A. Hunt. “Media Over Coaxial Alliance (MoCA): Overview and

Security Posture.” Available by request.
[2] “Back-UPS ES - Product Information,” APC by Schneider Electric.

[Online]. Available:
http://www.apc.com/products/family/index.cfm?id=21. [Accessed: 26-
Apr-2013].

[3] A. Kropelin, “Apcupsd, a daemon for controlling APC UPSes,” 13-
Sep-2011. [Online]. Available: http://www.apcupsd.com/. [Accessed:
25-Apr-2013].

[4] W. Wang and T. Dey, “A Survey on ARM Cortex A Processors.”
[Online]. Available:
http://www.cs.virginia.edu/~skadron/cs8535_s11/ARM_Cortex.pdf.
[Accessed: 26-Apr-2013].

[5] Offensive Security, “Install Kali ARM on a Raspberry Pi,” Kali Linux
Official Documentation. [Online]. Available:
http://docs.kali.org/armel-armhf/install-kali-linux-arm-raspberry-pi.
[Accessed: 18-Apr-2013].

[6] rageweb, “Raspi-config in Kali,” Hypothetically Planned Trajectory,
21-Mar-2013. [Online]. Available:

http://rageweb.info/2013/03/21/raspi-config-in-kali/. [Accessed: 18-
Apr-2013].

[7] A. Presser, L. Farrell, D. Kemp, and W. Lupton, “UPnP Device
Architecture 1.1,” UPnP Forum, 15-Oct-2008. [Online]. Available:
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-
v1.1.pdf. [Accessed: 17-Feb-2013].

[8] “UPnP Forum,” 2013. [Online]. Available: http://www.upnp.org/.
[Accessed: 17-Feb-2013].

[9] S. Gibson, “GRC | Port Authority, for Internet Port 1900,” Gibson
Research Corporation. [Online]. Available:
http://www.grc.com/port_1900.htm. [Accessed: 17-Feb-2013].

[10] “Simple Service Discovery Protocol,” Wikipedia, the free
encyclopedia. 13-Feb-2013.

[11] C. Gueguen, “Simple Service Discovery Protocol (SSDP),” The
Wireshark Wiki, 02-Mar-2009. .

[12] Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright, “Simple Service
Discovery Protocol/1.0: Operating without an Arbiter,” Internet
Engineering Task Force, 28-Oct-1999. [Online]. Available:
https://tools.ietf.org/html/draft-cai-ssdp-v1-03. [Accessed: 17-Feb-
2013].

[13] R. Ahmed, L. Limam, J. Xiao, Y. Iraqi, and R. Boutaba, “Resource and
Service Discovery in Large-Scale, Multi-Domain Networks,” IEEE
Communications Surveys and Tutorials, Quarter 2007.

[14] S. Cheshire, B. Aboba, and E. Guttman, “RFC 3927: Dynamic
Configuration of IPv4 Link-Local Addresses,” Internet Engineering
Task Force, May-2005. [Online]. Available:
http://www.ietf.org/rfc/rfc3927.txt. [Accessed: 17-Feb-2013].

[15] B. Langley, M. Paolucci, and K. Sycara, “Discovery of Infrastructure
in Multi-Agent Systems.” [Online]. Available:
http://www.cs.cmu.edu/~softagents/papers/infrastructureDiscovery.pdf.
[Accessed: 17-Feb-2013].

[16] E. Lachinov, “Digital Living Network Alliance,” Wikipedia, the free
encyclopedia. 14-Feb-2013.

[17] C. Heffner, “Miranda Readme File.” [Online]. Available:
file:///home/ahunt/Documents/isa564/paper/miranda-
1.3/docs/readme.html. [Accessed: 18-Mar-2013].

[18] C. Heffner, “miranda-upnp - Python-based interactive UPnP client -
Google Project Hosting.” [Online]. Available:
http://code.google.com/p/miranda-upnp/. [Accessed: 18-Mar-2013].

[19] F. Scholz, “UPnP-Inspector 0.2.2,” Python Package Index. [Online].
Available: https://pypi.python.org/pypi/UPnP-Inspector/0.2.2.
[Accessed: 18-Mar-2013].

[20] T. Potter, J.-M. Gurney, and Fluendo, “Coherence - a DLNA/UPnP
Framework for the Digital Living - Trac,” 02-Jan-2010. [Online].
Available: http://coherence.beebits.net/. [Accessed: 18-Mar-2013].

[21] J. Georg, J. Baayen, R. Burton, and Z. Ali, “GUPnP,” GNOME Live!
[Online]. Available: https://live.gnome.org/GUPnP/. [Accessed: 19-
Feb-2013].

[22] Z. Ali, J. Georg, T. Vermier, and J. Henstridge, “Rygel,” GNOME
Live!, 11-Feb-2013. [Online]. Available: https://live.gnome.org/Rygel.
[Accessed: 17-Mar-2013].

[23] “4. ssdp — SSDP Server implementation — python-brisa UPnP
framework v0.10.0 documentation.” [Online]. Available:
http://brisa.garage.maemo.org/doc/html/upnp/ssdp.html. [Accessed:
17-Feb-2013].

[24] G. George, E. Wirt, and D. Blueman, “Linux UPnP Internet Gateway
Device,” 08-Feb-2007. [Online]. Available: http://linux-
igd.sourceforge.net/documentation.php. [Accessed: 18-Mar-2013].

[25] vwochnik, “Administrating Your Gateway Device Via UPnP,”
HowtoForge - Linux Howtos and Tutorials, 21-Apr-2009. [Online].
Available: http://www.howtoforge.com/administrating-your-gateway-
device-via-upnp. [Accessed: 17-Mar-2013].

[26] S. Gibson, “GRC | UnPlug n’ Pray - Disable the Dangerous UPnP
Internet Server,” Gibson Research Corporation, 03-Mar-2008.
[Online]. Available: http://www.grc.com/unpnp/unpnp.htm. [Accessed:
17-Feb-2013].

[27] H. Moore, “Security Flaws in Universal Plug and Play: Unplug, Don’t
Play,” 29-Jan-2013. [Online]. Available:
https://community.rapid7.com/servlet/JiveServlet/download/2150-1-
16596/SecurityFlawsUPnP.pdf. [Accessed: 17-Feb-2013].

[28] T. Bernard, “MiniUPnP Project HomePage,” Feb-2013. [Online].
Available: http://miniupnp.free.fr/. [Accessed: 25-Apr-2013].

[29] “Google Apps Platform — Google Developers.” [Online]. Available:
https://developers.google.com/google-apps/gmail/imap_extensions.
[Accessed: 26-Apr-2013].

[30] “Ettercap (computing),” Wikipedia, the free encyclopedia. 29-Oct-
2012. [Online]. Available: http://en.wikipedia.org/w/index.php?
title=Ettercap_(computing)&oldid=520362724. [Accessed: 12-Nov-
2012].

[31] A. Ornaghi and M. Valleri, “Ettercap.” [Online]. Available:
http://ettercap.sourceforge.net/. [Accessed: 12-Nov-2012].

[32] “ARP spoofing,” Wikipedia, the free encyclopedia. 12-Nov-2012.
[Online]. Available: http://en.wikipedia.org/w/index.php?
title=ARP_spoofing&oldid=522187503. [Accessed: 12-Nov-2012].

[33] S. Whalen, “An Introduction to Arp Spoofing,” Apr-2001. [Online].
Available: http://dl.packetstormsecurity.net/papers/protocols
/intro_to_arp_spoofing.pdf. [Accessed: 12-Nov-2012].

[34] A. Ornaghi and M. Valleri, “Man In The Middle Attacks Demos,” in
BlackHat Conference USA, Las Vegas, NV, 2003. [Online]. Available:
http://www.blackhat.com/presentations/bh-usa-03/bh-us-03-ornaghi-
valleri.pdf. [Accessed: 12-Nov-2012].

[35] “Penetration Testing Software | Metasploit.” [Online]. Available:
http://www.metasploit.com/. [Accessed: 19-Nov-2012].

[36] W. Alcorn, “BeEF - The Browser Exploitation Framework Project.”
[Online]. Available: http://beefproject.com/. [Accessed: 19-Nov-2012].

[37] M. Vallentin and Y. Ben-David, “Persistent Browser Cache Poisoning,”
2010. [Online]. Available: http://www.eecs.berkeley.edu/
~yahel/papers/Browser-Cache-Poisoning.Song.Spring10.attack-
project.pdf. [Accessed: 19-Nov-2012].

[38] F. Amato and F. Kirschbaum, “You STILL have pending upgrades!,”
in DefCon 18, Las Vegas, NV, 2010. [Online]. Available:
https://www.defcon.org/images/defcon-18/dc-18-presentations/Amato-
Kirschabum/DEFCON-18-Amato-Kirschabum-Evilgrade.pdf.
[Accessed: 19-Nov-2012].

[39] V. Oezer, “The Evil Karmetasploit Upgrade,” in Nullcon, Zuri, India,
2009. [Online]. Available: http://nullcon.net/nullcon2010presentation
/Veysel_nullcon2010_Paper.pdf. [Accessed: 19-Nov-2012].

[40] J. Wright, “Hacking Your Friends and Neighbors For Fun… (no profit,
just fun) - hacking-friends,” Will Hack for Sushi, 18-Jan-2013.
[Online]. Available: http://neighbor.willhackforsushi.com/hacking-
friends.pdf. [Accessed: 12-Apr-2013].

[41] “Linux iptables: Port Redirection Example.” [Online]. Available:
http://www.cyberciti.biz/faq/linux-port-redirection-with-iptables/.
[Accessed: 26-Apr-2013].

[42] “SquidFaq/InterceptionProxy - Squid Web Proxy Wiki.” [Online].
Available: http://wiki.squid-cache.org/SquidFaq/InterceptionProxy.
[Accessed: 26-Apr-2013].

