
© 2014 The MITRE Corporation. All rights reserved.

C o r e y K a l l e n b e r g
X e n o K o va h
J o h n B u t t e rw o r t h
S a m C o r n w e l l

Extreme Privilege Escalation
on Windows 8/UEFI Systems

@ c o r e yk a l
@ x e n o k o va h
@ jw b u t t e rw o r t h 3
@ s s c 0 r nw e l l

| 2 |

Introduction

� Who we are:
– Trusted Computing and firmware security researchers at The

MITRE Corporation

� What MITRE is:
– A not-for-profit company that runs six US Government "Federally

Funded Research & Development Centers" (FFRDCs) dedicated to
working in the public interest

– Technical lead for a number of standards and structured data
exchange formats such as CVE, CWE, OVAL, CAPEC, STIX,
TAXII, etc

– The first .org, !(.mil | .gov | .com | .edu | .net), on the ARPANET

© 2014 The MITRE Corporation. All rights reserved.

| 3 |

Attack Model (1 of 2)

� An attacker has gained administrator access on a victim
Windows 8 machine

� But they are still constrained by the limits of Ring 3

© 2014 The MITRE Corporation. All rights reserved.

| 4 |

Attack Model (2 of 2)

� Attackers always want
– More Power
– More Persistence
– More Stealth

© 2014 The MITRE Corporation. All rights reserved.

| 5 |

Typical Post-Exploitation Privilege Escalation

� Starting with x64 Windows vista, kernel drivers must be signed and contain
an Authenticode certificate

� In a typical post-exploitation privilege escalation, the attacker wants to
bypass the signed driver requirement to install a kernel level rootkit

� Various methods to achieve this are possible, including:
– Exploit existing kernel drivers
– Install a legitimate (signed), but vulnerable, driver and exploit it

� This style of privilege escalation has been well explored by other
researchers such as [6][7].

� There are other, more extreme, lands the attacker may wish to explore

© 2014 The MITRE Corporation. All rights reserved.

| 6 |

Other Escalation Options (1 of 2)

� There are other more interesting post-exploitation options an
attacker may consider:
– Bootkit the system
– Install SMM rootkit
– Install BIOS rootkit

© 2014 The MITRE Corporation. All rights reserved.

| 7 |

Other Escalation Options (2 of 2)

� Modern platforms contain protections against these more exotic
post-exploitation privilege-escalations
– Bootkit the system (Prevented by Secure Boot)
– Install SMM rootkit (SMM is locked on modern systems)
– Install BIOS rootkit (SPI Flash protected by lockdown mechanisms)

© 2014 The MITRE Corporation. All rights reserved.

| 8 |

Extreme Privilege Escalation (1 of 2)

� This talk presents extreme privilege escalation
– Administrator userland process exploits the platform firmware

(UEFI)
– Exploit achieved by means of a new API introduced in Windows 8

© 2014 The MITRE Corporation. All rights reserved.

| 9 |

Extreme Privilege Escalation (2 of 2)

� Once the attacker has arbitrary code execution in the context of the
platform firmware, he is able to:
– Control other "rings" on the platform (SMM, Ring 0)
– Persist beyond operating system re-installations
– Permanently "brick" the victim computer

© 2014 The MITRE Corporation. All rights reserved.

| 10 |

Target Of Attack

� Modern Windows 8 systems ship with UEFI firmware
� UEFI is designed to replace conventional BIOS and provides a

well defined interface to the operating system

© 2014 The MITRE Corporation. All rights reserved.

| 11 |

Windows 8 API

� Windows 8 has introduced an API that allows a privileged
userland process to interface with a subset of the UEFI interface

© 2014 The MITRE Corporation. All rights reserved.

| 12 |

EFI Variable Creation Flow

� Certain EFI variables can be created/modified/deleted by the
operating system
– For example, variables that control the boot order and platform

language
� The firmware can also use EFI variables to communicate

information to the operating system
© 2014 The MITRE Corporation. All rights reserved.

| 13 |

EFI Variable Consumption

� The UEFI variable interface is a conduit by which a less privileged
entity (admin Ring 3) can produce data for a more complicated
entity (the firmware) to consume

� This is roughly similar to environment variable parsing attack
surface on *nix systems

© 2014 The MITRE Corporation. All rights reserved.

| 14 |

Previous EFI Variable Issues (1 of 2)

� We’ve already co-discovered[13] with Intel some vulnerabilities
associated with EFI Variables that allowed bypassing secure
boot and/or bricking the platform

© 2014 The MITRE Corporation. All rights reserved.

| 15 |

Previous EFI Variable Issues (2 of 2)

� However, VU #758382 was leveraging a proprietary Independent
BIOS Vendor (IBV) implementation mistake, it would be more
interesting if we could find a variable vulnerability more generic
to UEFI

© 2014 The MITRE Corporation. All rights reserved.

| 16 |

UEFI Vulnerability Proliferation

� If an attacker finds a vulnerability in the UEFI "reference
implementation," its proliferation across IBVs and OEMs would
potentially be wide spread.
– More on how this theory works "in practice" later…

 © 2014 The MITRE Corporation. All rights reserved.

| 17 |

Auditing UEFI

� UEFI reference implementation is open source, making it easy to audit
� Let the games begin:

– Svn checkout https://svn.code.sf.net/p/edk2/code/trunk/edk2/

http://tianocore.sourceforge.net/wiki/Welcome

© 2014 The MITRE Corporation. All rights reserved.

| 18 |

Where to start looking for problems?

� Always start with wherever there is attacker-controlled input
� We had good success last year exploiting Dell systems by

passing an specially-crafted fake BIOS update…
� So let's see if UEFI has some of the same issues
� The UEFI spec has outlined a "Capsule update" mechanism

– Capsule Update is initiated and guided by EFI variable contents
that are controllable by the operating system

© 2014 The MITRE Corporation. All rights reserved.

| 19 |

Capsule Scatter Write

� To begin the process of sending a Capsule update for
processing, the operating system takes a firmware capsule and
fragments it across the address space

© 2014 The MITRE Corporation. All rights reserved.

| 20 |

Capsule Processing Initiation

� The operating system creates an EFI variable that describes the
location of the fragmented firmware capsule

� A "warm reset" then occurs to transition control back to the
firmware

© 2014 The MITRE Corporation. All rights reserved.

| 21 |

Capsule Coalescing

� The UEFI code "coalesces" the firmware capsule back into its
original form.

© 2014 The MITRE Corporation. All rights reserved.

| 22 |

Capsule Verification

� UEFI parses the envelope of the firmware capsule and verifies
that it is signed by the OEM

© 2014 The MITRE Corporation. All rights reserved.

| 23 |

Capsule Consumption

� Contents of the capsule are then consumed….
– Flash contents to the SPI flash
– Run malware detection independent of the operating system
– Etc…

© 2014 The MITRE Corporation. All rights reserved.

| 24 |

Opportunities For Vulnerabilities

� There are 3 main opportunities for memory corruption
vulnerabilities in the firmware capsule processing code
1. The coalescing phase
2. Parsing of the capsule envelope
3. Parsing of unsigned content within the capsule

� Our audit of the UEFI capsule processing code yielded multiple
vulnerabilities in the coalescing and envelope parsing code
– The first "BIOS reflash" exploit was presented by Wojtczuk and

Tereshkin. They found it by reading the UEFI code which handled
BMP processing and exploiting an unsigned splash screen image
embedded in a firmware[1]

© 2014 The MITRE Corporation. All rights reserved.

| 25 |

Coalescing Bug #1

� Bug 1: Integer overflow in capsule size sanity check
– Huge CapsuleSize may erroneously pass sanity check

Edk2/MdeModulePkg/Universal/CapsulePei/Common/CapsuleCoalesce.c

© 2014 The MITRE Corporation. All rights reserved.

| 26 |

Coalescing Bug #2

� Bug 2: Integer overflow in fragment length summation
– CapsuleSize may be less than true summation of fragment lengths

Edk2/MdeModulePkg/Universal/CapsulePei/Common/CapsuleCoalesce.c

© 2014 The MITRE Corporation. All rights reserved.

| 27 |

Envelope Parsing Bug (Bug #3)

� Bug 3: Integer overflow in multiplication before allocation
– LbaCache may be unexpectedly small if NumBlocks is huge

Edk2/MdeModulePkg/Core/Dxe/FwVolBlock/FwVolBlock.c

© 2014 The MITRE Corporation. All rights reserved.

| 28 |

Miscellaneous Coalescing Bug (Bug #4)

� Bug 4: Integer overflow in IsOverlapped
– Can erroneously return False if Buff1+Size1 overflows
– This didn’t directly lead to a vulnerability but we had to abuse it to

successfully exploit the other bugs

Edk2/MdeModulePkg/Universal/CapsulePei/Common/CapsuleCoalesce.c

© 2014 The MITRE Corporation. All rights reserved.

| 29 |

Vulnerabilities Summary

� We spent ~1 week looking at the UEFI reference implementation and
discovered vulnerabilities in security critical code
– The identified vulnerabilities occur before the update is cryptographically verified

� The presence of easy to spot integer overflows in open source and security
critical code is… disturbing
– Is no one else looking here?

ValidateCapsuleIntegrity: Edk2/MdeModulePkg/Universal/CapsulePei/Common/CapsuleCoalesce.c

© 2014 The MITRE Corporation. All rights reserved.

| 30 |

Onward To Exploitation

� The aforementioned code runs with read-write-execute permissions
– Flat protected mode with paging disabled
– No mitigations whatsoever

� However, successful exploitation in this unusual environment was
non-trivial

© 2014 The MITRE Corporation. All rights reserved.

| 31 |

Coalescing Exploit Attempt

� Attempt #1: Provide a huge capsule size and clobber our way
across the address space to some function pointer on the stack
area

© 2014 The MITRE Corporation. All rights reserved.

| 32 |

Coalescing Exploit Fail

� Overwriting certain regions of the address space had undesirable results
� We had to come up with an approach that skipped past the forbidden

region

© 2014 The MITRE Corporation. All rights reserved. See whitepaper for full details on the exploitation technique

| 33 |

Coalescing Exploit Success

� Came up with a multistage approach that involved corrupting the
descriptor array
– Achieve surgical write-what-where primitive
– Combined bugs #1, #2, #4 and abused a CopyMem optimization

See whitepaper for full details on the exploitation technique © 2014 The MITRE Corporation. All rights reserved.

| 34 |

Envelope Parsing Exploitation

� Exploitation of the "envelope parsing" bug was complicated for
several reasons

� Note that in order to trigger the undersized LbaCache allocation, the
NumBlocks value must be huge
– This effectively means that the corrupting for() loops will never

terminate

Edk2/MdeModulePkg/Core/Dxe/FwVolBlock/FwVolBlock.c

© 2014 The MITRE Corporation. All rights reserved.

| 35 |

Total Address Space Annihilation

� Loop will corrupt entire address space and hang the system

© 2014 The MITRE Corporation. All rights reserved.

| 36 |

Other Complications

� LbaCache pointer is overwritten by the corruption, further complicating
things

� Values being written during the corruption are not entirely attacker
controller

© 2014 The MITRE Corporation. All rights reserved.

| 37 |

Corruption Direction Change

� Overwriting the LbaCache pointer changes the location the
corruption continues at

© 2014 The MITRE Corporation. All rights reserved.

| 38 |

Difficulties Recap

� An attacker has some serious hoops to jump through to
successfully exploit the envelope parsing vulnerability
– Corrupting of base pointer for corruption (LbaCache)
– Only partially controlled values being written
– Corrupting loop will never terminate

© 2014 The MITRE Corporation. All rights reserved.

| 39 |

Self-overwriting Code

� Our approach to escaping the non-terminating for loop was to massage the
corruption so the loop would self-overwrite

� In this case, we overwrite the top of the basic block with non-advantageous
x86 instructions
– Overwritten values only "semi-controlled"

© 2014 The MITRE Corporation. All rights reserved.

| 40 |

Self-overwriting Success

� With some brute force we discovered a way to overwrite the looping
basic block with advantageous attacker instructions
– Jump to uncorrupted shellcode

© 2014 The MITRE Corporation. All rights reserved.

| 41 |

Exploitation Mechanics Summary

� Vulnerable code runs with read-write-execute permissions and
no mitigations

� However, successful exploitation was still complicated
� Capsule coalescing exploit allows for surgical write-what-where

primitive resulting in reliable exploitation of the UEFI firmware
– Address space is almost entirely uncorrupted so system remains

stable
� Capsule envelope parsing vulnerability can be exploited but

corrupts a lot of the address space
– System probably in an unstable state

� In both cases, attacker ends up with control of EIP in the early
boot environment

© 2014 The MITRE Corporation. All rights reserved.

| 42 |

Exploitation Flow (1 of 8)

� Our Sith attacker is unimpressed with his ring 3 admin privileges
and seeks to grow his power through the dark side of the force

© 2014 The MITRE Corporation. All rights reserved.

| 43 |

Exploitation Flow (2 of 8)

� Attacker seeds an evil capsule update into memory
� Attacker then uses SetFirmwareEnvironmentVariable to prepare the firmware to

consume the evil capsule
� Shellcode to be executed in the early boot environment is staged in memory

 © 2014 The MITRE Corporation. All rights reserved.

| 44 |

Exploitation Flow (3 of 8)

� Warm reset is performed to transfer context back to UEFI

© 2014 The MITRE Corporation. All rights reserved.

| 45 |

Exploitation Flow (4 of 8)

� Capsule processing is initiated by the existence of the
"CapsuleUpdateData" UEFI variable

© 2014 The MITRE Corporation. All rights reserved.

| 46 |

Exploitation Flow (5 of 8)

� UEFI begins to coalesce the evil capsule

© 2014 The MITRE Corporation. All rights reserved.

| 47 |

Exploitation Flow (6 of 8)

� UEFI becomes corrupted while parsing evil capsule

© 2014 The MITRE Corporation. All rights reserved.

| 48 |

Exploitation Flow (7 of 8)

� Attacker gains arbitrary code execution in the context of the early
boot environment
– Platform is unlocked at this point

 © 2014 The MITRE Corporation. All rights reserved.

| 49 |

Exploitation Flow (8 of 8)

� Attacker can now establish agents in SMM and/or the platform
firmware to do their bidding

© 2014 The MITRE Corporation. All rights reserved.

| 50 |

Unnatural Powers

� With these new powers, our attacker can:
– Brick the platform
– Defeat Secure Boot[2]
– Establish an undetectable SMM rootkit[8][5]
– Subvert hypervisors[9]
– Subvert TXT launched hypervisors[3]
– Circumvent operating system security functions[11]
– Survive operating system reinstallation attempts
– Other?

© 2014 The MITRE Corporation. All rights reserved.

| 51 |

Demo Time

© 2014 The MITRE Corporation. All rights reserved.

| 52 |

Vendor Response

� We told Intel & CERT about the bugs we found on Nov 22nd and Dec
4th 2013
– We conveyed that we would extend our typical 6 month responsible

disclosure deadline, and we would be targeting public disclosure in
the summer at BlackHat/Defcon

– We also directly contacted some of the OEMs that we already had the
capability to send encrypted email to

� Intel queried UEFI partners to ask if they were using the affected
code

� If the vendors said they thought they would be affected, then Intel
sent them the details

� Then we didn't hear anything for a while
� Eventually Intel indicated which vendors said they were vulnerable,

and which systems would be patched.
� This information is conveyed in CERT VU #552286
� The UEFI forum is in the process of setting up a UEFI Security

Response Team to better coordinate these sort of disclosures in
the future. Shooting to go live by Sept 1.

© 2014 The MITRE Corporation. All rights reserved.

| 53 |

What can you do about it?

� Run Copernicus. It has been updated to automatically report if your
system is on the VU # 552286 affected list
– http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-

blog/copernicus-question-your-assumptions-about or just search for
"MITRE Copernicus"

� We also have a binary integrity checking capability for Copernicus.
This can help you detect if your BIOS has been backdoored
– The capability is freely available, but it's not as simple and foolproof

as the public Copernicus (it will have false positives/negatives). And
we don't really have the resources to support it for everyone.
Therefore we prioritize who we work with to use it, based on the
number of systems that will be checked. So if you're serious about
checking your BIOSes, email copernicus@mitre.org
� We also need this data to feed further research results on the state of BIOS

security in the wild on deployed systems. Unlike the IPMI people, we can't
just portscan networks to get 100k research results :P

© 2014 The MITRE Corporation. All rights reserved.

http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
mailto:copernicus@mitre.org

| 54 |

What can you do about it?

� If you're a security vendor, start including BIOS checks
– If you're a customer, start asking for BIOS checks

� We are happy to freely give away our Copernicus code to get
vendors started with incorporating checking BIOSes. All we ask
for in return is some data to help further our research.

� We want BIOS configuration & integrity checking to become
standard capabilities which are widely available from as many
vendors as possible.
– No more massive blind spot please!

© 2014 The MITRE Corporation. All rights reserved.

| 55 |

Conclusion

� UEFI has more tightly coupled the bonds of the operating
system and the platform firmware

� Specifically, the EFI variable interface acts as a conduit by which
a less privileged entity (the operating system) can pass
information for consumption by a more privileged entity (the
platform firmware)
– We have demonstrated how a vulnerability in this interface can

allow an attacker to gain control of the firmware
� Although the authors believe UEFI to ultimately be a good thing

for the state of platform security, a more thorough audit of the
UEFI code and its new features is needed

� Copernicus continues to be updated to give the latest
information about whether vulnerabilities affect your BIOS

© 2014 The MITRE Corporation. All rights reserved.

| 56 |

Questions & Contact

� {ckallenberg, xkovah, jbutterworth, scornwell} @ mitre . org
� Copernicus @ mitre . org
� @coreykal, @xenokovah, @jwbutterworth3, @ssc0rnwell
� @MITREcorp

� P.s., go check out OpenSecurityTraining.info!
� @OpenSecTraining

© 2014 The MITRE Corporation. All rights reserved.

| 57 |

References

� [1] Attacking Intel BIOS – Alexander Tereshkin & Rafal Wojtczuk – Jul. 2009
http://invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BIOS.pdf

� [2] A Tale of One Software Bypass of Windows 8 Secure Boot – Yuriy Bulygin –
Jul. 2013 http://blackhat.com/us-13/briefings.html#Bulygin

� [3] Attacking Intel Trusted Execution Technology - Rafal Wojtczuk and Joanna
Rutkowska – Feb. 2009
http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-
%20paper.pdf

� [4] Defeating Signed BIOS Enforcement – Kallenberg et al., Sept. 2013 –
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-
enforcement.pdf

� [5] BIOS Chronomancy: Fixing the Core Root of Trust for Measurement –
Butterworth et al., May 2013
http://www.nosuchcon.org/talks/D2_01_Butterworth_BIOS_Chronomancy.pdf

� [6] IsGameOver() Anyone? – Rutkowska and Tereshkin – Aug 2007
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf

� [7] Defeating Windows Driver Signature Enforcement – j00ru - Dec 2012
http://j00ru.vexillium.org/?p=1455

© 2014 The MITRE Corporation. All rights reserved.

http://blackhat.com/us-13/briefings.html
http://blackhat.com/us-13/briefings.html
http://blackhat.com/us-13/briefings.html
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.nosuchcon.org/talks/D2_01_Butterworth_BIOS_Chronomancy.pdf
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf
http://j00ru.vexillium.org/?p=1455

| 58 |

References 2

� [8] Copernicus 2 – SENTER The Dragon – Kovah et al. – March 2014
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-
Dragon-CSW-.pdf

� [9] Preventing and Detecting Xen Hypervisor Subversions – Rutkowska and
Wojtczuk – Aug 2008 http://www.invisiblethingslab.com/resources/bh08/part2-
full.pdf

� [10] A New Breed of Rootkit: The Systems Management Mode (SMM) Rootkit –
Sparks and Embleton – Aug 2008 http://www.eecs.ucf.edu/~czou/research/SMM-
Rootkits-Securecom08.pdf

� [11] Using SMM for "Other Purposes" – BSDaemon et al – March 2008
http://phrack.org/issues/65/7.html

� [12] Using SMM to Circumvent Operating System Security Functions – Duflot et
al. – March 2006 http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf

� [13] Setup for Failure: Defeating UEFI SecureBoot – Kallenberg et al. – April 2014
http://www.syscan.org/index.php/download/get/6e597f6067493dd581eed737146f
3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip

© 2014 The MITRE Corporation. All rights reserved.

http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://phrack.org/issues/65/7.html
http://phrack.org/issues/65/7.html
http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf
http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf
http://www.syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip
http://www.syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip
http://www.syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip

