DIY Hardware implant over I2C

Part of the NSA Playset

This slide deck will change for the talk to include more information and details!

Josh Datko and Teddy Reed

DEF CON 22

August 10, 2014

Outline

- NSA Playset DEF CON Series
- 2 I2C Attack Points
- 3 I²C Module
- 4 Controller Device
- GSM Module
- **6** WAGONBED Improvements
- GSM Exfil Alternaive: Audio
- 8 Wrapup

NSA Playset Series

What is the NSA Playset?

We hope the NSA Playset will make cutting edge security tools more accessible, easier to understand, and harder to forget.

NSA Playset Talks

RF Retroreflector	Penn & Teller	Friday	12:00
DIY Hardware Implant	Penn & Teller	Sunday	11:00
GSM Sniffing	Penn & Teller	Sunday	12:00
PCle	Penn & Teller	Sunday	14:00

The NSA apparently has a hardware hacking catalog.¹

Flip...Flip...Flip...

¹like SkyMall for spies and without the Bigfoot.

The NSA apparently has a hardware hacking catalog.¹

Flip...Flip...Flip...

Oh look honey, there's an I^2C controller board we can get. It attaches to a computer and it's modular, so you can add a GSM cell phone for exfil.

¹like SkyMall for spies and without the Bigfoot.

The NSA apparently has a hardware hacking catalog.¹

Flip...Flip...Flip...

Oh look honey, there's an l^2C controller board we can get. It attaches to a computer and it's modular, so you can add a GSM cell phone for exfil.

That's nice dear.

¹like SkyMall for spies and without the Bigfoot.

The NSA apparently has a hardware hacking catalog.¹

Flip...Flip...Flip...

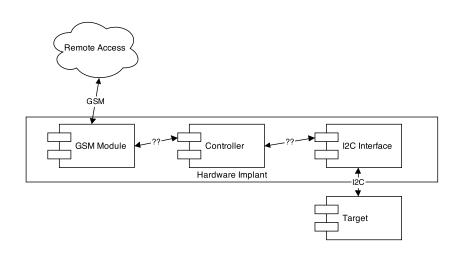
Oh look honey, there's an l^2C controller board we can get. It attaches to a computer and it's modular, so you can add a GSM cell phone for exfil.

That's nice dear.

I wonder how that works...

¹like SkyMall for spies and without the Bigfoot.

Requirements for the implant

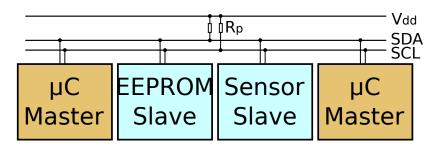

Reverse-engineered requirements:

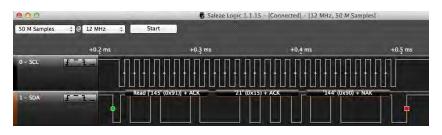
- Must attach over I²C to the target.
- Must include GSM reachback to the implant.

Our requirements:

- Easy to use.
- As much commodity hardware as possible.
- Fun.

Implant Control Diagram


Background: What is I²C


- Serial bus.
- Two-wires: (plus power and ground).²
 - Data: SDAClock: SCL
- Multi-master.
- Multi-slave.³
- Addressable.
- Standard speed is 100kHz (100kbps). High Speed: 3.2Mbps theoretical max.

²Typically 5 or 3.3V

³Note to SJWs, this is the technical correct term.

Background: I²C in visual form

I²C attack surfaces

- EEPROMs
- PCI and PCIe.
- Battery controllers
- Video ...

Video I²C

Why is there I^2C on your monitor adapter?

Video I²C

Why is there I^2C on your monitor adapter?

How does your computer "automatically detect" monitor resolution?

Video I²C

Why is there I^2C on your monitor adapter?

How does your computer "automatically detect" monitor resolution?

Extended Display Identification Data

Data Display Channel, a.k.a. 5V I²C

EDID

```
→ ~ sudo get-edid
This is read-edid version 3.0.1. Prepare for some fun.
Attempting to use i2c interface
No EDID on bus 0
No EDID on bus 2
No EDID on bus 3
No EDID on bus 4
No EDID on bus 5
1 potential busses found: 1
128-byte EDID successfully retrieved from i2c bus 1
??????"??%h"???SE?$PT?™0*?Q*@0pT?2MS
?HP L1710
?CNC822NZ8B
Looks like i2c was successful. Have a good day.
a2
```

\$ edid-decode

```
→ card0-VGA-1 pwd
/sys/class/drm/card0-VGA-1
→ card0-VGA-1 cat edid | edid-decode
Extracted contents:
       00 ff ff ff ff ff ff 00
header:
serial number: 22 f0 eb 26 01 01 01 01 16 12
        01 03
version:
basic params: 68 22 1b 8c ee
chroma info: af c0 a7 53 45 9d 24 17 50 54
established: ad ef 80
         standard:
descriptor 1: 30 2a 00 98 51 00 2a 40 30 70 13 00 54 0e 11 00 00 1e
descriptor 2: 00 00 00 fd 00 32 4d 18 53 0e 00 0a 20 20 20 20 20 20
descriptor 3: 00 00 00 fc 00 48 50 20 4c 31 37 31 30 0a 20 20 20 20
descriptor 4: 00 00 00 ff 00 43 4e 43 38 32 32 4e 5a 38 42 0a 20 20
              00
extensions:
checksum:
              61
```

ioreg -lw0 -r -c "IODisplayConnect"

EDID Extension Blocks

Tag Number	Extension Block Description
00h	Timing Extension
02h	CEA-EXT: CEA 861 Series Extension
10h	VTB-EXT: Video Timing Block Extension
20h	EDID 2.0 Extension
40h	DI-EXT: Display Information Extension
50h	LS-EXT: Localized String Extension
60h	DPVL-EXT: Digital Packet Video Link Extension
A7h, AFh, BFh	DTCDB-EXT: Display Transfer Characteristics
F0h	EXTENSION Block Map
FFh	EXTENSIONS defined by the OEM

Parsing implemented by the OS-supplied VESA driver or GPU driver manufacturer.

Exploiting EDID/EDID Extension parsing

Hacking Displays Made Interesting
Blackhat EU 2012
Andy Davis - NGS Secure
https://github.com/nccgroup/EDIDFuzzer

Exploiting EDID/EDID Extension parsing

Hacking Displays Made Interesting
Blackhat EU 2012
Andy Davis - NGS Secure
https://github.com/nccgroup/EDIDFuzzer

Simple adaptation for BeagleBone Implemented in Python (BBIO)

https://github.com/theopolis/bone-edidfuzzer

Exploiting EDID/EDID Extension parsing

Hacking Displays Made Interesting
Blackhat EU 2012
Andy Davis - NGS Secure
https://github.com/nccgroup/EDIDFuzzer

Simple adaptation for BeagleBone Implemented in Python (BBIO)

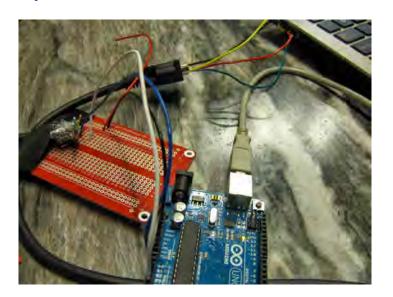
https://github.com/theopolis/bone-edidfuzzer

Discover proprietary EDID extensions! Moar fuzzing! Or assume a-priori software control...

I²C everywhere IC⁴

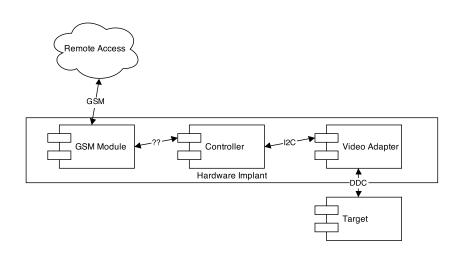
A video card may have multiple I^2C buses and devices. NVIDIA cards may have I^2C for the following:

- EEPROM for encrypted HDCP keys
- Onboard voltage regulator
- Thermal sensor
- TV decoder chip (older cards)


Exploring VGA I²C

Let's start exploring our attack surface.

Pin	Name	Description
1	RED	Red Video
2	GREEN	Green Video
3	BLUE	Blue Video
:	:	:
5	GND	Ground
9	KEY	Optional +5V output from graphics card
12	SDA	I2C data
15	SCL	I2C data clock


VGA Pinout

I want my I $^2\text{C}\ ^5$

⁵Dire Straights fans, anyone?

Filling in the details

Controller Selection

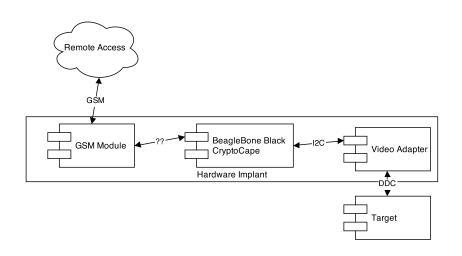
Controller Selection

BeagleBone Black is the embedded hacker's friend:

- 1GHz AM3358 ARM® Cortex-A8
- 512MB DDR3 RAM
- Two independent Programmable Real-Time Units (32bit)
- Crypto accelerators for AES, SHA, MD5
- UARTs, PWM, LCD, GPMC, SPI, ADC, CAN, Timers
- Two I²C buses

CryptoCape

Let's add some hardware security ICs:

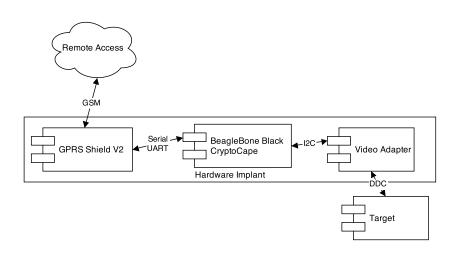

CryptoCape

Let's add some hardware security ICs:

- Authenticators: ECC & MAC (SHA256)
- Encrypted EEPROM (AES-128-CCM)
- Battery backed up Real-time clock
- Trusted Platform Module
- ATmega328p, because Arduino.

Add the controller

GSM Module

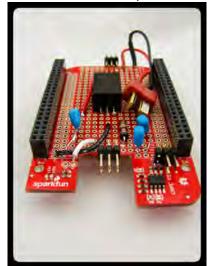

GSM Module

Seeed Studo GPRS Shield v2:

- Arduino form factor
- GSM Quad band support
- TCP support
- SIM card holder
- Works with Tmobile, AT&T

Add the GSM module

Moar Power?

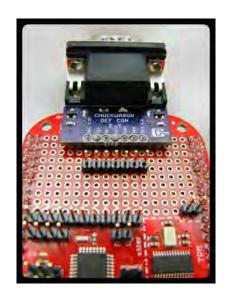

- BBB draws 460mA on boot
- CryptoCape
- GSM Shield draws 300mA on average for "talk", but peak of 2.0 A!!!

Meet the *LiPo*WerCape

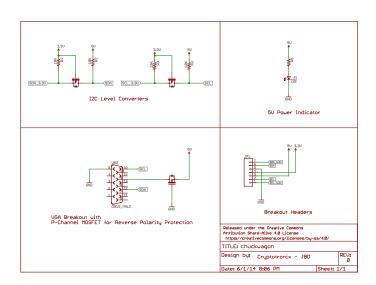
Moar Power?

- BBB draws 460mA on boot
- CryptoCape
- GSM Shield draws 300mA on average for "talk", but peak of 2.0 A!!!

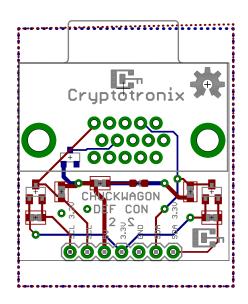
Meet the *LiPo*WerCape

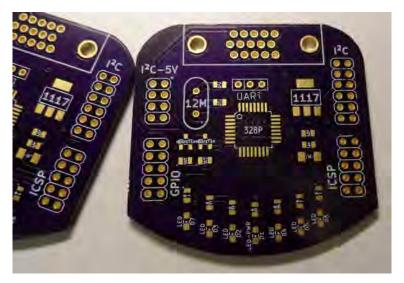

CHUCKWAGON

We still need a way to easily connect to the video adapter. Meet CHUCKWAGON:

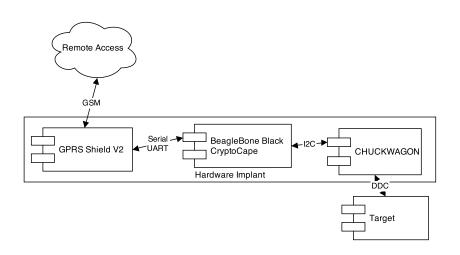

CHUCKWAGON

We still need a way to easily connect to the video adapter. Meet CHUCKWAGON:


- Breadboard friendly.
- Logic level converters for I2C.
- Supplies 5V.
- Power indicator.
- Attaches to CryptoCape


CHUCKWAGON schematic

CHUCKWAGON board

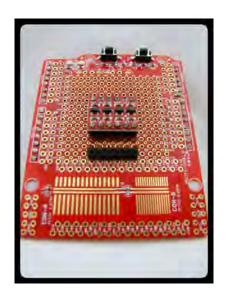


I^2C hack not that new...

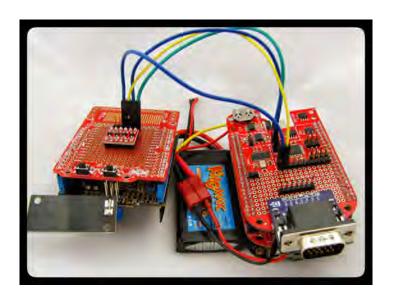
As seen on Hackaday

Add the CHUCKWAGON

Connect to GSM module


Ok, so let's connect to the GSM Shield from the Beagle!

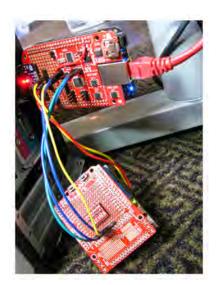
- BBB's UART4, broken-out by ATmega's program jumpers.
- GSM's shield software-serial, D7 and D8
- /me checks datasheet one last time...


Connect to GSM module

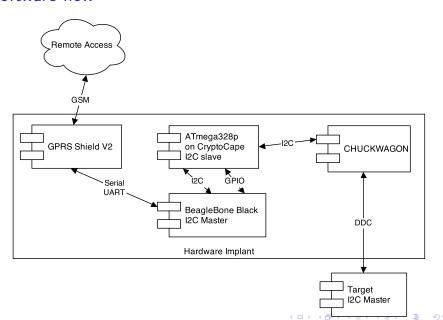
Ok, so let's connect to the GSM Shield from the Beagle!

- BBB's UART4, broken-out by ATmega's program jumpers.
- GSM's shield software-serial, D7 and D8
- /me checks datasheet one last time...
- Needs logic level converters!


Completed Hardware with Battery



Completed Hardware without Battery


Completed Hardware without Battery

Software flow

Software flow

If software on the target can communicate with the implant then:

• Target can exfil out to implant to GSM.

- Target can exfil out to implant to GSM.
- Target can exfil out to implant for storage.

- Target can exfil out to implant to GSM.
- Target can exfil out to implant for storage.
- Implant can provide code for target to run.

- Target can exfil out to implant to GSM.
- Target can exfil out to implant for storage.
- Implant can provide code for target to run.
- \bullet Control the implant over GSM \to control the target over GSM

Accessorize!

Prepared for anything or NSA hacking toolkit?

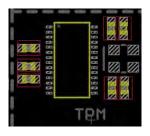
How to improve the CHUCKWAGON

What does CHUCKWAGON rev. B look like?

- Consolidate into one board: ImplantCape
- Eliminate flywires.
- HDMI footprint vs. VGA
- Could all be done from AVR (less power), but BBB is more fun.

Using Crypto for Evil!

Long history of Cryptography and Malware!


Cryptoviral Extortion:

- 1989 PC Cybord, Joseph Popp
- 1996 Macintosh SE/30 crytovirus PoC, Young and Yung
- 2006 Gpcode.AG/AK, Cryzip
- 2013 CryptoLocker, CryptorBit

Reversing Anti-Analysis:

- Packers, Obfuscator, VM-based JIT
- 2011 TPM "cloaking" malware
- 2014 Uroburos, encrypted VFS
- 2014 TPM-enabled super-targeted malware

Using Crypto for Evil!

The CryptoCape includes a TPM...

- I²C friendly
- Protected RSA private key storage
- Windows 8 friendly
- More or less optional, as there is most likely an onboard TPM

Cloaking Malware with the Trusted Platform Module

2011 USENIX Security

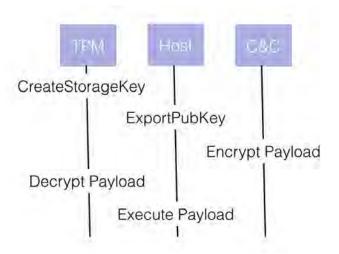
Alan M. Dunn, Owen S. Hofmann, Brent Waters, Emmett Witchel Summary: Use TPM-protected keys and an Intel TXT PAL to protect malicious code execution from observation, analysis, and tamperment.

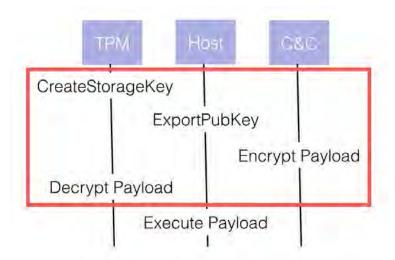
Cloaking Malware with the Trusted Platform Module

2011 USENIX Security

Alan M. Dunn, Owen S. Hofmann, Brent Waters, Emmett Witchel Summary: Use TPM-protected keys and an Intel TXT PAL to protect malicious code execution from observation, analysis, and tamperment.

Intel TXT and remote attestation are hard!
But generating a public key on a TPM and using that to encrypt additional payloads is easy...


Cloaking Malware with the Trusted Platform Module


2011 USENIX Security

Alan M. Dunn, Owen S. Hofmann, Brent Waters, Emmett Witchel Summary: Use TPM-protected keys and an Intel TXT PAL to protect malicious code execution from observation, analysis, and tamperment.

Intel TXT and remote attestation are hard! But generating a public key on a TPM and using that to encrypt additional payloads is easy...

Put a TPM on your implant and protect against nasty network interception. Also restrict analysis to the target machine upon discovery (or force memory analysis).

Windows 8 automatically enables/initializes a TPM, then creates and manages your owner password. Access to TPM is abstracted through Microsoft CSP.

Windows PcpTool Kit:
NCryptOpenStorageProvider
NCryptCreatePersistedKey
NCryptExportKey
NCryptDecrypt

Python pefile to inject encrypted PE section into a decryption stub.

In memory process creation:

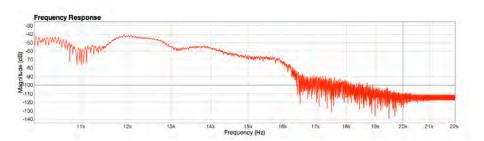
CreateProcess
ZwUnmapViewOfSection
VirtualAllocEx
WriteProcessMemory

tpm-malcrypt

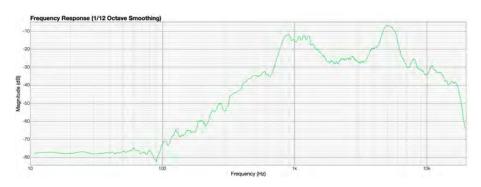
fork tpm-malcrypt!

https://github.com/theopolis/tpm-malcrypt

- tpm-keyextract, create and exfil a storage public key
- malcrypter, encrypt and inject into decryption stub
- malcrypt, decryption stub, process creation/injection


Backstory: **#badBIOS** thought to use Audio as an out-of-band exfiltration or C&C mechanism. Dismissed as infeasable by BIOS development SMEs.

Backstory: **#badBIOS** thought to use Audio as an out-of-band exfiltration or C&C mechanism. Dismissed as infeasable by BIOS development SMEs.



Data of Audio Protocols are very well defined and resiliant.

QPSK10 (10 baud), **QPSK05** (5 baud), quadrature phase shift keying modulation to provide forward error correction.

Possible to "pivot" through colluding machines. Local network exploitation creates a mesh of audio-capable relays such as idle headphones.

Demos, Learning, and Fabulous Prizes

Join us in the HHV for CryptoCape and WAGONBED demos!

Challenge: Solve the puzzle here:

(URL redaction removed during actual DEFCON 22 talk)

The first 5 correct submissions win a DIY hardware implant kit (No hardware hacking experience required)

Demos, Learning, and Fabulous Prizes

Thank you!