Steganography in Commonly Used HF Radio Protocols

D C

Decoded JT65 message 8 ; KD2000 KHIND 0000 Hidden message ; DEFCON 22 pigraspberrupi "/jt65stego \$./jt65tool.py --interact jve --key "PD006THEDUKEZIP"

Waiting for start of minute... Monitoring... Decoding... Maiting for start of minute... Monitoring...

DIS®EEV DI HIII

@pdogg77 @TheDukeZip

pdogg

- Paul / pdogg / @pdogg77
- Day Job: Security Researcher at Confer Technologies Inc.
- Hobby: Licensed as an amateur radio operator in 1986, ARRL VE
- This is my second trip to DEF CON

thedukezip

- Brent / thedukezip / @thedukezip
- Software &
 Systems Engineer (RF)
- Licensed ham radio op since 2006, ARRL VE

Why You Shouldn't Do This And Why We Didn't Do It On The Air

FCC Regulations (Title 47 – Part 97)
§ 97.113 Prohibited transmissions.
(a) No amateur station shall transmit:

(4) Music using a phone emission except as specifically provided elsewhere in this section; communications intended to facilitate a criminal act; <u>messages encoded for the purpose of obscuring their meaning, except as otherwise provided herein;</u> obscene or indecent words or language; <u>or false or deceptive messages</u>, signals or identification.

How This Project Started... Final Warning Slide...

- Hackers + Drinks = **Project**
- WANC We are not cryptographers
- We are not giving cryptographic advice
- You should talk to a cryptographer
- If you are a cryptographer, we welcome your input

What?

We set out to demonstrate it was possible (or impossible) to create a:

- Low Infrastructure
- Long Range
- Covert
- Point to Point, Broadcast or Mesh
- Short Message Protocol

Using existing consumer radio and computer equipment, leveraging a commonly used digital mode

Why?

- Avoid censorship
- Avoid spying

- We believe you have the right to communicate without this interference
- You COULD use our method to communicate, OR use similar techniques to create your own method

... Or "The Terrorists"

No Internet?

Amateur radio operators have expertise in this!

Amateur Radio

- Many frequency bands reserved for amateur radio operators to communicate
- Voice chat, digital modes...
- Take a multiple choice test to get licensed

• Reminder: The rules say you can't do what we're showing you...

AirChat

- Anonymous Lulzlabs
- Encrypted communication in plain sight
- Cool project with a different purpose
- Also breaks the rules

Good Steganography / Good OPSEC

- ... means hiding well in plain sight.
- Invisible to normal users
- "Plausible deniability"
- Not this \rightarrow

More Like This

NOT THIS!

Guns == Good! Smartphones == BAD :)

Ways to Hide ...

- Protocol features (headers, checksums etc)
- Timing or substitution
- Errors
- No "spurious emissions" etc... (against the rules, obvious, very "visible")
- Candidate Protocol must:

... be in widespread common use

... have places to hide

... be relatively power efficient

Need no special hardware or closed software

Popular Sound Card Digital Modes

• RTTY

- In use on radio since at least the 1920s
- Baudot code 5 bit symbols with a stop and a shift – "mark and space"
- Amateurs almost always use a 45 baud version with 170hz carrier shift
- Limited character set

- PSK31 etc.
 - Phase shift keying 31 baud...
 - Developed by Peter
 Martinez G3PLX in 1998
 - VERY tight protocol -"Varicode"

JT65

- Developed by Joe Taylor K1JT 2005
- Original paper: "The JT65 Communications Protocol"
- Designed for Earth-Moon-Earth communications. Also now widely used for skywave contacts
- Very power efficient
- Structured communication, very low data rate
- Open source implementation

JT65 Conversations

Some Common HF Ham Freqs: 20m 14.076MHz 15m 21.076MHz 10m 28.076MHz

Upper Side Band

Some JT65 Technical Details

Audio

- JT65 "packet" sliced into 126 .372s intervals 47.8s
- 1270.5 Hz sync tone "pseudo-random synchronization vector"
- Symbols 1270.5 + 2.6917(N+2)m Hz
 - N is the integral symbol value, $0 \le N \le 63$
 - m assumes the values 1, 2, and 4 for JT65 sub-modes A, B, and C

Fig. 3 The needed random sequence used in IT65 as a "synchronizing vector" and a

Hiding in Reed Solomon Codes

- Exploit error correction!
- Easy/PoC Mode: Shove in some errors... :) (static "key")
- Medium mode: Shove in errors, add some random cover
- Hard Mode: Encrypt and pack message, add FEC
- Prior Work: Hanzlik, Peter "Steganography in Reed-Solomon Codes", 2011

Encoding Steganography (Basic)

Steg: DEF CON 22

Source Encoding:

19 51 00 26 06 17 52 04 31 15 56 28

FEC:

24 42 21 21 43 42 56 22 19 51 00 26 06 17 52 04 31 15 56 28

Can tolerate 4 errors

Hiding Steganography

Key: pdogg thedukezip

Generate 20 'locations' based on SHA512

09 29 41 35 20 32 27 15 23 18 53 12 45 03 13 40 49 22 25 37

Injecting Errors

JT65: KB2BBC KA1AAB DD44

39	19	16	44	29	13	58	19	13	14	20	44	17	20	25	31	46	02	29	35	56
17	11	20	39	51	07	30	26	11	17	27	21	11	30	34	46	48	15	53	14	26
12	07	05	08	42	41	37	19	16	35	63	20	03	12	38	26	80	37	22	23	29

Steg: DEF CON 22

24 42 21 21 43 42 56 22 19 51 00 26 06 17 52 04 31 15 56 28

Key: pdogg thedukezip

09 29 41 35 20 32 27 15 23 18 53 12 45 03 13 40 49 22 25 37

Injecting Errors

JT65: KB2BBC KA1AAB DD44

39	19	16	44	29	13	58	19	13	14	20	44	17	20	25	31	46	02	29	35	56
17	11	20	39	51	07	30	26	11	17	27	21	11	30	34	46	48	15	53	14	26
12	07	05	08	42	41	37	19	16	35	63	20	03	12	38	26	08	37	22	23	29

JT65: KB2BBC KA1AAB DD44 Steg: DEF CON 22 Key: pdogg thedukezip

What About Encryption?

- We have 12 * 6 = 72 bits to play with
- We need 8 bit bytes...
- Well that gives us exactly 9 bytes

"Packing" Function

Status 1 byte	Data 8 bytes										
10000001	110010 100100	01 101 11 001	.10001 (.01010 (11110010 00011001	$01111000\\00001001$						
Steganography 12 6-bit symbols											
100000	011100	100110	110001	111100	100111						
100010	010011	001010	100001	100100	001001						

"Status" Byte

Status 1 byte

- Track how many total packets in message
- Flags for first / last packet
- Track size for stream ciphers

Waiting for start of minute...

Decoded JT65 message 0 : KB2BBC KA1AAB DD44

Steg detected! (1/3) total packets received.
Monitoring...
Decoding...
Waiting for start of minute...

Decoded JT65 message 0 : KA1AAB KB2BBC DD44

Steg detected! (2/3) total packets received.
Monitoring...
Decoding...
Waiting for start of minute...

Decoded JT65 message 0 : KB2BBC KA1AAB DD44

Hidden message : SEE YOU AT DEF CON 22

6.0	Statu	s" Byte	e – S	tre	am (Cip	her				
First pa	icket:	(0x80)) (#	of	tota.	l pa	(ckets)				
Middle	packets:	Pa	cket N	umk)er						
Last pa	icket:	(0x40)	(#	of	bytes	; in	packet)				
Max siz 1 bit	Max size: 64 packets (512 bytes)										
First Packet?	First Last First?: # of total packets Packet? Packet? Else: # of bytes in packet										

Max size: 128 packets (1024 bytes)

1 bit	7 bits	
First Packet?	First? : # of total packets Else : Packet Number	

Hiding the Status Byte

- We'll talk about analysis in a bit...
- Steganography traffic was trivial to pick out of normal traffic because of this byte :(

Perform Bit Swap

Tool Demo...

"Feed Reader" RasPi Demo...

Analysis/Steganalysis

- Defined set of legitimate JT65 packets
- "Known Cover Attack"
- Receive packet → Decode → Encode
- Demodulator provides "probability" or confidence
- Theory:
 - Packets suspected to contain steganography can be easily distinguished by some quantitative measure

Known Cover

JT65: KB2BBC KA1AAB DD44

39	19	16	44	29	13	58	19	13	14	20	44	17	20	25	31	46	02	29	35	56
17	11	20	39	51	07	30	26	11	17	27	21	11	30	34	46	48	15	53	14	26
12	07	05	08	42	41	37	19	16	35	63	20	03	12	38	26	80	37	22	23	29

JT65: KB2BBC KA1AAB DD44 Steg: DEF CON 22 Key: pdogg thedukezip

Analysis Module

Finding Steganography is Easy

Finding Steganography is Hard

Finding Steganography is Hard

		·

Errors/SNR

Finding Steganography is Hard

Errors/MAD(confidence)

Interesting Patterns (and a warning)

Distance

- Considering we cannot SEND these packets
- Let's pretend we received them (<= 7 errors)
- How far away were the senders?

Effectiveness as a World Wide Short Message Protocol

How to get it?

Available today!

Oh yeah, it's on your conference DVD too...

"Vulnerabilities" / Known Limitations

- Analysis and Detection
 - As discussed / other methods
- Transmitter location (foxhunting)
 - Well studied problem/game by amateurs and TLAs
 - FCC/DEA/NSA SANDKEY(1)
- Message Forgery
- Storage / long term cryptographic analysis

(1) http://cryptomeorg.siteprotect.net/dea-nsa-sandkey.pdf

- Federal Communications Commission

 The FCC
 Our Work
 Tools & Data
 Business & Lice

 Search
 Search
 Take Action
 Comm
 - Home / The FCC / FCC Encyclopedia / High Frequency Direction Finding Center

High Frequency Direction Finding Center

The High Frequency Direction Finding Capability Center (HFDFC) provides direct support to the public safety community and other federal partners by locating interference sources. The HFDFC ensures public safety and security of the High Frequency (HF) radio spectrum (below 30 MHz) by providing assistance and technical expertise to the FCC and its licensees before, during and after emergencies. It also provides interference resolution to FCC licensees and federal government agencies, and supports the enforcement and management of the HF Spectrum.

Conclusions

- Protocols and methods such as those presented can, in theory, provide a platform for short message communications with desirable properties:
 - Low infrastructure
 - Long distance
 - Covert
 - Plausibly deniable
- Potential for analysis and detection
 - Especially for well equipped adversaries

Next Steps / Further Areas of Study

- Continued Detection / Counter Detection Work
- Cryptographic Improvements
- Enhanced amateur applications
- Useful protocols and networks

Ham Exam

Crypto & Privacy Village Sunday 12 PM – 3 PM Get an FCC FRN!

Exam Cram Session Wireless Village Sunday morning - TBA

THANKS!

@pdogg77
@TheDukeZip

https://www.github.com/pdogg/jt65stego/

Special Thanks @masshackers